Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

25.03.2020 | Ausgabe 5/2020

Water Resources Management 5/2020

Identifying the Links Among Poverty, Hydroenergy and Water Use Using Data Mining Methods

Zeitschrift:
Water Resources Management > Ausgabe 5/2020
Autoren:
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Shukri Ahmed, Nana Yan, Ian White, Miao Zhang, Alfred Stein
Wichtige Hinweise
Shukri Ahmed the information and views expressed are the authors’ and do not necessarily represent FAO’s views, positions, strategies or opinions.

Highlights

1. We investigated the water and poverty links from a global water development view of poverty alleviation.
2. Data mining methods was applied to explore the links between water development and poverty rates in a world-wide context.
3. We find that the ratio of water utilization, water availability per capita and reservoir density contributed most to predict poverty class and related to poverty alleviation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Water is fundamental to human well-being, social development and the environment. Water development, particularly hydropower, provides an important source of renewable energy. Water development is strongly affected by poverty, but only few attempts have been made to understand the links between water development and poverty from a global water development point of view. In this work, this linkage was explored using reservoir construction, hydroenergy and water use data along with six derived indicators. We used association rule mining and classification and regression trees (CART) to identify the links. Random forests were employed to search for factors sensitive to poverty. This study shows that the reservoir density is significantly related to poverty, and reservoir densities are lower in countries with higher poverty rates. Countries with a higher use of small hydropower (SHP) systems are generally more prosperous as follows: an SHP utilization rate above 27% corresponds to a poverty rate below 4.9%. The ratio of water utilization, water availability per capita (WAPC) and reservoir density were essential for the prediction of the poverty class. All three ratios could be related to poverty alleviation as they enable the identification of the potential for water resource development and their constraints. This study concludes that water development in poor countries needs to receive more attention.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Water Resources Management 5/2020 Zur Ausgabe