Skip to main content
Erschienen in: The Journal of Supercomputing 10/2021

01.04.2021

iHRNL: Iterative Hessian-based manifold regularization mechanism for localization in WSN

verfasst von: Abhishek, Rakesh Kumar Yadav, Shekhar Verma, S. Venkatesan

Erschienen in: The Journal of Supercomputing | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose an iterative Hessian regularization technique for node localization in wireless sensor network (WSN). The technique is based on the observation that received signal strength indicator (RSSI)-based node localization problem using a few location-aware anchor nodes, and a large number of location-unaware non-anchor nodes can be modeled as a manifold regularization-based regression problem. A signal transmitted from a node attenuates with distance. However, this attenuation is not uniform due to noise and other detrimental channel conditions. This apparently embeds the nodes in an unknown high-dimensional space. The proposed technique assumes that these nodes are the data points lying on a high-dimensional manifold and the locations of these nodes can be obtained accurately through an iterative Hessian regularized regression. In Hessian regularization, temporary location values are assigned to each non-anchor node, which are further refined in the subsequent iterations. This is followed by localized Procrustes analysis to offset the affine transformation on temporary location values. To validate the proposed technique, we deployed TelosB motes to form a WSN. The beacons broadcast from nodes were used for finding the RSSI distance estimates followed by the localization process. We observed that our proposed technique is able to localize the sensor nodes accurately and outperformed the baseline supervised learning, Hessian and iterative Laplacian regularization methods with an increase in accuracy of around \(70\%\) over the baseline supervised method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(d_{max}\) is maximum communication range of the underlying WSN nodes.
 
4
Here, \(P_{r_{i}}\) is the power received at \(i^{th}\) distance denoted by \(d_{i}\).
 
Literatur
1.
Zurück zum Zitat Kumari J, Kumar P, Singh SK (2019) Localization in three-dimensional wireless sensor networks: a survey. J Supercomput 75(8):5040–5083CrossRef Kumari J, Kumar P, Singh SK (2019) Localization in three-dimensional wireless sensor networks: a survey. J Supercomput 75(8):5040–5083CrossRef
2.
Zurück zum Zitat Jain N, Verma S, Kumar M (2018) Patch-based lle with selective neighborhood for node localization. IEEE Sens J 18(9):3891–3899CrossRef Jain N, Verma S, Kumar M (2018) Patch-based lle with selective neighborhood for node localization. IEEE Sens J 18(9):3891–3899CrossRef
3.
Zurück zum Zitat Kashniyal J, Verma S, Singh KP (2019) A new patch and stitch algorithm for localization in wireless sensor networks. Wireless Netw 25(6):3251–3264CrossRef Kashniyal J, Verma S, Singh KP (2019) A new patch and stitch algorithm for localization in wireless sensor networks. Wireless Netw 25(6):3251–3264CrossRef
4.
Zurück zum Zitat Yin F, Zhao Y, Gunnarsson F, Gustafsson F (2017) Received-signal-strength threshold optimization using gaussian processes. IEEE Trans Signal Process 65(8):2164–2177MathSciNetCrossRef Yin F, Zhao Y, Gunnarsson F, Gustafsson F (2017) Received-signal-strength threshold optimization using gaussian processes. IEEE Trans Signal Process 65(8):2164–2177MathSciNetCrossRef
5.
Zurück zum Zitat Entezami F, Tunicliffe M, Politis C (2014) Find the weakest link: Statistical analysis on wireless sensor network link-quality metrics. IEEE Veh Technol Mag 9(3):28–38CrossRef Entezami F, Tunicliffe M, Politis C (2014) Find the weakest link: Statistical analysis on wireless sensor network link-quality metrics. IEEE Veh Technol Mag 9(3):28–38CrossRef
6.
Zurück zum Zitat Singh A, Verma S (2017) Graph laplacian regularization with procrustes analysis for sensor node localization. IEEE Sens J 17(16):5367–5376CrossRef Singh A, Verma S (2017) Graph laplacian regularization with procrustes analysis for sensor node localization. IEEE Sens J 17(16):5367–5376CrossRef
7.
Zurück zum Zitat Chappelle O, Schölkopf B, Zien A (2010) Semi-supervised learning. adaptive computation and machine learning Chappelle O, Schölkopf B, Zien A (2010) Semi-supervised learning. adaptive computation and machine learning
8.
Zurück zum Zitat Ayodele TO (2010) Introduction to machine learning. New Advances in Machine Learning, 1–9 Ayodele TO (2010) Introduction to machine learning. New Advances in Machine Learning, 1–9
9.
Zurück zum Zitat Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recogn 41(9):2789–2799CrossRef Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recogn 41(9):2789–2799CrossRef
10.
Zurück zum Zitat Xiao B, Chen L, Xiao Q, Li M (2009) Reliable anchor-based sensor localization in irregular areas. IEEE Trans Mob Comput 9(1):60–72CrossRef Xiao B, Chen L, Xiao Q, Li M (2009) Reliable anchor-based sensor localization in irregular areas. IEEE Trans Mob Comput 9(1):60–72CrossRef
11.
Zurück zum Zitat Yi S, Wheeler R, Ying Z, Fromherz Markus PJ (2004) Localization from connectivity in sensor networks. IEEE Trans. Parallel Distributed Sys 15:961–974CrossRef Yi S, Wheeler R, Ying Z, Fromherz Markus PJ (2004) Localization from connectivity in sensor networks. IEEE Trans. Parallel Distributed Sys 15:961–974CrossRef
12.
Zurück zum Zitat Shang Y, Ruml W, Zhang Y, Fromherz MP (2003) Localization from mere connectivity. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking&Amp; Computing, MobiHoc ’03, 201–212 Shang Y, Ruml W, Zhang Y, Fromherz MP (2003) Localization from mere connectivity. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking&Amp; Computing, MobiHoc ’03, 201–212
13.
Zurück zum Zitat Shang Y, Ruml W (2004) Improved mds-based localization. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, 4, 2640–2651 Shang Y, Ruml W (2004) Improved mds-based localization. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, 4, 2640–2651
14.
Zurück zum Zitat Costa JA, Patwari N, Hero III AO (2006) Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks (TOSN) 2(1):39–64 Costa JA, Patwari N, Hero III AO (2006) Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks (TOSN) 2(1):39–64
15.
Zurück zum Zitat Behera AP, Singh A, Verma S, Kumar M (2020) Manifold learning with localized procrustes analysis based wsn localization. IEEE Sens Lett 4(10):1–4CrossRef Behera AP, Singh A, Verma S, Kumar M (2020) Manifold learning with localized procrustes analysis based wsn localization. IEEE Sens Lett 4(10):1–4CrossRef
16.
Zurück zum Zitat Morral G, Bianchi P (2016) Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Sig Process 120:88–98CrossRef Morral G, Bianchi P (2016) Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Sig Process 120:88–98CrossRef
17.
Zurück zum Zitat Hao X (2020) Semi-supervised manifold learning based on polynomial mapping for localization in wireless sensor networks. Sig Process 172:107570CrossRef Hao X (2020) Semi-supervised manifold learning based on polynomial mapping for localization in wireless sensor networks. Sig Process 172:107570CrossRef
18.
Zurück zum Zitat El Assaf A, Zaidi S, Affes S, Kandil N (2016) Robust anns-based wsn localization in the presence of anisotropic signal attenuation. IEEE Wireless Commun Lett 5(5):504–507CrossRef El Assaf A, Zaidi S, Affes S, Kandil N (2016) Robust anns-based wsn localization in the presence of anisotropic signal attenuation. IEEE Wireless Commun Lett 5(5):504–507CrossRef
19.
Zurück zum Zitat Zhao L, Su C, Dai Z, Huang H, Ding S, Huang X, Han Z (2019) Indoor device-free passive localization with dcnn for location-based services. The Journal of Supercomputing, 1–18 Zhao L, Su C, Dai Z, Huang H, Ding S, Huang X, Han Z (2019) Indoor device-free passive localization with dcnn for location-based services. The Journal of Supercomputing, 1–18
20.
Zurück zum Zitat Liu S, Luo H, Zou S (2009) A low-cost and accurate indoor localization algorithm using label propagation based semi-supervised learning. In: 2009 Fifth International Conference on Mobile Ad-hoc and Sensor Networks, 108–111. IEEE Liu S, Luo H, Zou S (2009) A low-cost and accurate indoor localization algorithm using label propagation based semi-supervised learning. In: 2009 Fifth International Conference on Mobile Ad-hoc and Sensor Networks, 108–111. IEEE
21.
Zurück zum Zitat Jondhale SR, Deshpande RS (2018) Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sens J 19(1):224–233CrossRef Jondhale SR, Deshpande RS (2018) Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sens J 19(1):224–233CrossRef
22.
Zurück zum Zitat Keller Y, Gur Y (2011) A diffusion approach to network localization. IEEE Trans Signal Process 59(6):2642–2654MathSciNetCrossRef Keller Y, Gur Y (2011) A diffusion approach to network localization. IEEE Trans Signal Process 59(6):2642–2654MathSciNetCrossRef
23.
Zurück zum Zitat Guan Z, Peng J, Tan S (2013) Manifold ranking using hessian energy. Int J Softw Inf 7(3):391–405 Guan Z, Peng J, Tan S (2013) Manifold ranking using hessian energy. Int J Softw Inf 7(3):391–405
24.
Zurück zum Zitat Kim KI, Steinke F, Hein M (2009) Semi-supervised regression using hessian energy with an application to semi-supervised dimensionality reduction. In: Advances in Neural Information Processing Systems, 979–987 Kim KI, Steinke F, Hein M (2009) Semi-supervised regression using hessian energy with an application to semi-supervised dimensionality reduction. In: Advances in Neural Information Processing Systems, 979–987
25.
Zurück zum Zitat Shi C, Ruan Q, An G, Zhao R (2014) Hessian semi-supervised sparse feature selection based on \({L}_{2, 1/2}\) - matrix norm. IEEE Trans Multimedia 17(1):16–28CrossRef Shi C, Ruan Q, An G, Zhao R (2014) Hessian semi-supervised sparse feature selection based on \({L}_{2, 1/2}\) - matrix norm. IEEE Trans Multimedia 17(1):16–28CrossRef
26.
Zurück zum Zitat Kim KL, Steinke F, Hein M Supplementary material of “semi-supervised regression using hessian energy with an application to semi-supervised dimensionality reduction” Kim KL, Steinke F, Hein M Supplementary material of “semi-supervised regression using hessian energy with an application to semi-supervised dimensionality reduction”
27.
Zurück zum Zitat Saeed N, Nam H (2016) Cluster based multidimensional scaling for irregular cognitive radio networks localization. IEEE Trans Signal Process 64(10):2649–2659MathSciNetCrossRef Saeed N, Nam H (2016) Cluster based multidimensional scaling for irregular cognitive radio networks localization. IEEE Trans Signal Process 64(10):2649–2659MathSciNetCrossRef
28.
Zurück zum Zitat Igual L, Perez-Sala X, Escalera S, Angulo C, De la Torre F (2014) Continuous generalized procrustes analysis. Pattern Recogn 47(2):659–671CrossRef Igual L, Perez-Sala X, Escalera S, Angulo C, De la Torre F (2014) Continuous generalized procrustes analysis. Pattern Recogn 47(2):659–671CrossRef
29.
Zurück zum Zitat Li B, He Y, Guo F, Zuo L (2012) A novel localization algorithm based on isomap and partial least squares for wireless sensor networks. IEEE Trans Instrum Meas 62(2):304–314CrossRef Li B, He Y, Guo F, Zuo L (2012) A novel localization algorithm based on isomap and partial least squares for wireless sensor networks. IEEE Trans Instrum Meas 62(2):304–314CrossRef
30.
Zurück zum Zitat Xiang S, Nie F, Pan C, Zhang C (2011) Regression reformulations of lle and ltsa with locally linear transformation. IEEE Trans Sys, Man, and Cybernetics, Part B (Cybernetics) 41(5):1250–1262CrossRef Xiang S, Nie F, Pan C, Zhang C (2011) Regression reformulations of lle and ltsa with locally linear transformation. IEEE Trans Sys, Man, and Cybernetics, Part B (Cybernetics) 41(5):1250–1262CrossRef
31.
Zurück zum Zitat TelosB Datasheet. Crossbow inc, (2013) TelosB Datasheet. Crossbow inc, (2013)
32.
Zurück zum Zitat Dong C, Ding J, Lin J (2016) Segmented polynomial rssi-lqi ranging modelling for zigbee-based positioning systems. In: 2016 35th Chinese Control Conference (CCC), 8387–8390. IEEE Dong C, Ding J, Lin J (2016) Segmented polynomial rssi-lqi ranging modelling for zigbee-based positioning systems. In: 2016 35th Chinese Control Conference (CCC), 8387–8390. IEEE
33.
Zurück zum Zitat Zhang T, Yang J, Zhao D, Ge X (2007) Linear local tangent space alignment and application to face recognition. Neurocomputing 70(7–9):1547–1553CrossRef Zhang T, Yang J, Zhao D, Ge X (2007) Linear local tangent space alignment and application to face recognition. Neurocomputing 70(7–9):1547–1553CrossRef
Metadaten
Titel
iHRNL: Iterative Hessian-based manifold regularization mechanism for localization in WSN
verfasst von
Abhishek
Rakesh Kumar Yadav
Shekhar Verma
S. Venkatesan
Publikationsdatum
01.04.2021
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 10/2021
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-021-03761-0

Weitere Artikel der Ausgabe 10/2021

The Journal of Supercomputing 10/2021 Zur Ausgabe