Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.02.2020 | Original Article

Image denoising via structure-constrained low-rank approximation

Zeitschrift:
Neural Computing and Applications
Autoren:
Yongqin Zhang, Ruiwen Kang, Xianlin Peng, Jun Wang, Jihua Zhu, Jinye Peng, Hangfan Liu
Wichtige Hinweise
This work was supported by Natural Science Basic Research Program of Shaanxi (Program No. 2019JM-103), Open Research Fund of CAS Key Laboratory of Spectral Imaging Technology (Grant No. LSIT201920W), Social Science Foundation of Shaanxi Province (Grant No. 2019H010), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13090), and NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Low-rank approximation-based methods have recently achieved impressive results in image restoration. Generally, the low-rank constraint integrated with the nonlocal self-similarity prior is enforced for image recovery. However, it is still unsatisfactory to recover complex image structures due to the lack of joint modeling based on local and global information, especially when the signal-to-noise ratio is low. In this paper, we propose a novel structure-constrained low-rank approximation method using complementary local and global information, as, respectively, modeled by kernel Wiener filtering and low-rank regularization. The proposed method solves the ill-posed inverse problem associated with image denoising by the alternating direction method of multipliers. Experimental results demonstrate that the proposed method not only removes noise effectively, but also is highly competitive against the state-of-the-art methods both qualitatively and quantitatively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise