Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Image Processing for Digital Twin

verfasst von : Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty, Srikanta Pal

Erschienen in: Digital Twin – Fundamental Concepts to Applications in Advanced Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Improvement of product quality by reducing downtime is the ultimate aim in manufacturing. The product quality can be monitored from the process signals or images acquired at the time of manufacturing. For example, in machining, damage or wear of cutting tool causes degradation in product quality. This damage or wear can be monitored from the process signals such as force, acoustic emission, power, vibration etc. acquired during machining.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu LM, Fan F, Zhang Z, Chen Y, Hu DJ, Shi L (2019) Methodology and implementation of a vision-oriented open CNC system for profile grinding. Int J Adv Manuf Technol 100(5):2123–2131CrossRef Xu LM, Fan F, Zhang Z, Chen Y, Hu DJ, Shi L (2019) Methodology and implementation of a vision-oriented open CNC system for profile grinding. Int J Adv Manuf Technol 100(5):2123–2131CrossRef
2.
Zurück zum Zitat Yan MT, Lin SS (2011) Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol 100(5):2123–2131 Yan MT, Lin SS (2011) Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol 100(5):2123–2131
3.
Zurück zum Zitat Malayath G, Katta S, Sidpara AM, Deb S (2019) Length-wise tool wear compensation for micro electric discharge drilling of blind holes. Measurement 134:888–896CrossRef Malayath G, Katta S, Sidpara AM, Deb S (2019) Length-wise tool wear compensation for micro electric discharge drilling of blind holes. Measurement 134:888–896CrossRef
4.
Zurück zum Zitat Guo C, Qian J, Reynaerts D (2018) Deterministic removal strategy for machine vision assisted scanning micro electrochemical flow cell. J Manuf Process 34:167–178CrossRef Guo C, Qian J, Reynaerts D (2018) Deterministic removal strategy for machine vision assisted scanning micro electrochemical flow cell. J Manuf Process 34:167–178CrossRef
5.
Zurück zum Zitat Jia G, Dong X, Huo Q, Wang K, Mei X (2018) Positioning and navigation system based on machine vision intended for laser-electrochemical micro-hole processing. Int J Adv Manuf Technol 94(1):1397–1410CrossRef Jia G, Dong X, Huo Q, Wang K, Mei X (2018) Positioning and navigation system based on machine vision intended for laser-electrochemical micro-hole processing. Int J Adv Manuf Technol 94(1):1397–1410CrossRef
6.
Zurück zum Zitat Rodriguez-Araujo J, Rodriguez-Andina JJ, Farina J, Vidal F, Mato JL, Montealegre MA (2012) Industrial laser cladding systems: FPGA-based adaptive control. IEEE Ind Electron Mag 6(4):35–46CrossRef Rodriguez-Araujo J, Rodriguez-Andina JJ, Farina J, Vidal F, Mato JL, Montealegre MA (2012) Industrial laser cladding systems: FPGA-based adaptive control. IEEE Ind Electron Mag 6(4):35–46CrossRef
7.
Zurück zum Zitat Hofman JT, Pathiraj B, Van Dijk J, De Lange DF, Meijer J (2012) A camera based feedback control strategy for the laser cladding process. J Mater Process Technol 212(11):2455–2462CrossRef Hofman JT, Pathiraj B, Van Dijk J, De Lange DF, Meijer J (2012) A camera based feedback control strategy for the laser cladding process. J Mater Process Technol 212(11):2455–2462CrossRef
8.
Zurück zum Zitat Moralejo S, Penaranda X, Nieto S, Barrios A, Arrizubieta I, Tabernero I, Figueras J (2017) A feedforward controller for tuning laser cladding melt pool geometry in real time. Int J Adv Manuf Technol 89(1–4):821–831CrossRef Moralejo S, Penaranda X, Nieto S, Barrios A, Arrizubieta I, Tabernero I, Figueras J (2017) A feedforward controller for tuning laser cladding melt pool geometry in real time. Int J Adv Manuf Technol 89(1–4):821–831CrossRef
9.
Zurück zum Zitat Farshidianfar MH, Khajepour A, Gerlich A (2016) Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf Technol 82(5–8):1173–1186CrossRef Farshidianfar MH, Khajepour A, Gerlich A (2016) Real-time control of microstructure in laser additive manufacturing. Int J Adv Manuf Technol 82(5–8):1173–1186CrossRef
10.
Zurück zum Zitat Wang JJ, Lin T, Chen SB (2005) Obtaining weld pool vision information during aluminium alloy TIG welding. Int J Adv Manuf Technol 26(3):219–227CrossRef Wang JJ, Lin T, Chen SB (2005) Obtaining weld pool vision information during aluminium alloy TIG welding. Int J Adv Manuf Technol 26(3):219–227CrossRef
11.
Zurück zum Zitat Ma H, Wei S, Lin T, Chen S, Li L (2010) Binocular vision system for both weld pool and root gap in robot welding process. Sens Rev Ma H, Wei S, Lin T, Chen S, Li L (2010) Binocular vision system for both weld pool and root gap in robot welding process. Sens Rev
12.
Zurück zum Zitat Zhou L, Lin T, Chen SB (2006) Autonomous acquisition of seam coordinates for arc welding robot based on visual servoing. J Intell Rob Syst 47(3):239–255CrossRef Zhou L, Lin T, Chen SB (2006) Autonomous acquisition of seam coordinates for arc welding robot based on visual servoing. J Intell Rob Syst 47(3):239–255CrossRef
13.
Zurück zum Zitat Na X, Zhang Y, Liu Y, Walcott B (2009) Nonlinear identification of laser welding process. IEEE Trans Control Syst Technol 18(4):927–934CrossRef Na X, Zhang Y, Liu Y, Walcott B (2009) Nonlinear identification of laser welding process. IEEE Trans Control Syst Technol 18(4):927–934CrossRef
14.
Zurück zum Zitat Ma H, Wei S, Sheng Z, Lin T, Chen S (2010) Robot welding seam tracking method based on passive vision for thin plate closed-gap butt welding. Int J Adv Manuf Technol 48(9–12):945–953CrossRef Ma H, Wei S, Sheng Z, Lin T, Chen S (2010) Robot welding seam tracking method based on passive vision for thin plate closed-gap butt welding. Int J Adv Manuf Technol 48(9–12):945–953CrossRef
15.
Zurück zum Zitat Shen H, Lin T, Chen S, Li L (2010) Real-time seam tracking technology of welding robot with visual sensing. J Intell Rob Syst 59(3–4):283–298MATHCrossRef Shen H, Lin T, Chen S, Li L (2010) Real-time seam tracking technology of welding robot with visual sensing. J Intell Rob Syst 59(3–4):283–298MATHCrossRef
16.
Zurück zum Zitat Ye Z, Fang G, Chen S, Zou JJ (2013) Passive vision based seam tracking system for pulse-MAG welding. Int J Adv Manuf Technol 67(9–12):1987–1996CrossRef Ye Z, Fang G, Chen S, Zou JJ (2013) Passive vision based seam tracking system for pulse-MAG welding. Int J Adv Manuf Technol 67(9–12):1987–1996CrossRef
17.
Zurück zum Zitat Chen H, Liu K, Xing G, Dong Y, Sun H, Lin W (2014) A robust visual servo control system for narrow seam double head welding robot. Int J Adv Manuf Technol 71(9–12):1849–1860CrossRef Chen H, Liu K, Xing G, Dong Y, Sun H, Lin W (2014) A robust visual servo control system for narrow seam double head welding robot. Int J Adv Manuf Technol 71(9–12):1849–1860CrossRef
18.
Zurück zum Zitat Pan E, Ye L, Shi J, Chang TS (2009) On-line bleeds detection in continuous casting processes using engineering-driven rule-based algorithm. J Manuf Sci Eng 131(6) Pan E, Ye L, Shi J, Chang TS (2009) On-line bleeds detection in continuous casting processes using engineering-driven rule-based algorithm. J Manuf Sci Eng 131(6)
19.
Zurück zum Zitat Liu W, Jia Z, Wang F, Ma X, Wang W, Jia X, Song D (2012) An improved online dimensional measurement method of large hot cylindrical forging. Measurement 45(8):2041–2051CrossRef Liu W, Jia Z, Wang F, Ma X, Wang W, Jia X, Song D (2012) An improved online dimensional measurement method of large hot cylindrical forging. Measurement 45(8):2041–2051CrossRef
20.
Zurück zum Zitat Bračun D, Škulj G, Kadiš M (2017) Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging. Int J Adv Manuf Technol 90(1):917–926CrossRef Bračun D, Škulj G, Kadiš M (2017) Spectral selective and difference imaging laser triangulation measurement system for on line measurement of large hot workpieces in precision open die forging. Int J Adv Manuf Technol 90(1):917–926CrossRef
21.
Zurück zum Zitat Agarwal K, Shivpuri R, Zhu Y, Chang TS, Huang H (2011) Process knowledge based multi-class support vector classification (PK-MSVM) approach for surface defects in hot rolling. Expert Syst Appl 38(6):7251–7262CrossRef Agarwal K, Shivpuri R, Zhu Y, Chang TS, Huang H (2011) Process knowledge based multi-class support vector classification (PK-MSVM) approach for surface defects in hot rolling. Expert Syst Appl 38(6):7251–7262CrossRef
22.
Zurück zum Zitat Song K, Yan Y (2013) A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl Surf Sci 285:858–864CrossRef Song K, Yan Y (2013) A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl Surf Sci 285:858–864CrossRef
23.
Zurück zum Zitat Luo Q, He Y (2016) A cost-effective and automatic surface defect inspection system for hot-rolled flat steel. Robot Comput-Integr Manuf 38:16–30CrossRef Luo Q, He Y (2016) A cost-effective and automatic surface defect inspection system for hot-rolled flat steel. Robot Comput-Integr Manuf 38:16–30CrossRef
24.
Zurück zum Zitat Zhao YJ, Yan YH, Song KC (2017) Vision-based automatic detection of steel surface defects in the cold rolling process: considering the influence of industrial liquids and surface textures. Int J Adv Manuf Technol 90(5–8):1665–1678CrossRef Zhao YJ, Yan YH, Song KC (2017) Vision-based automatic detection of steel surface defects in the cold rolling process: considering the influence of industrial liquids and surface textures. Int J Adv Manuf Technol 90(5–8):1665–1678CrossRef
25.
Zurück zum Zitat Fischer A, Stöbener D (2019) In-process roughness quality inspection for metal sheet rolling. CIRP Ann 68(1):523–526CrossRef Fischer A, Stöbener D (2019) In-process roughness quality inspection for metal sheet rolling. CIRP Ann 68(1):523–526CrossRef
26.
Zurück zum Zitat ISO 3685: 1993(E), Tool life testing with single point turning tools ISO 3685: 1993(E), Tool life testing with single point turning tools
27.
Zurück zum Zitat Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) Application of digital image processing in tool condition monitoring: a review. CIRP J Manuf Sci Technol 6:212–232CrossRef Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) Application of digital image processing in tool condition monitoring: a review. CIRP J Manuf Sci Technol 6:212–232CrossRef
28.
Zurück zum Zitat Dutta S, Pal SK, Sen R (2014) Digital image processing in machining. In: Davim JP (ed) modern mechanical engineering—Research, development and education. Springer, Berlin, pp 369–412 Dutta S, Pal SK, Sen R (2014) Digital image processing in machining. In: Davim JP (ed) modern mechanical engineering—Research, development and education. Springer, Berlin, pp 369–412
29.
Zurück zum Zitat Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2015) Cutting edge localisation in an edge profile milling head. In: International conference on computer analysis of images and patterns. Springer, Cham, pp 336–347 Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2015) Cutting edge localisation in an edge profile milling head. In: International conference on computer analysis of images and patterns. Springer, Cham, pp 336–347
30.
Zurück zum Zitat Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2017) Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput-Integr Manuf 44:276–283CrossRef Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2017) Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput-Integr Manuf 44:276–283CrossRef
31.
Zurück zum Zitat García-Ordás MT, Alegre-Gutiérrez E, Alaiz-Rodríguez R, González-Castro V (2018) Tool wear monitoring using an online, automatic and low cost system based on local texture. Mech Syst Signal Process 112:98–112CrossRef García-Ordás MT, Alegre-Gutiérrez E, Alaiz-Rodríguez R, González-Castro V (2018) Tool wear monitoring using an online, automatic and low cost system based on local texture. Mech Syst Signal Process 112:98–112CrossRef
32.
Zurück zum Zitat You Z, Gao H, Guo L, Liu Y, Li J (2020) On-line milling cutter wear monitoring in a wide field-of-view camera. Wear, 460:203479 You Z, Gao H, Guo L, Liu Y, Li J (2020) On-line milling cutter wear monitoring in a wide field-of-view camera. Wear, 460:203479
33.
Zurück zum Zitat Duan G, Chen YW, Sukegawa T (2010) Automatic optical flank wear measurement of microdrills using level set for cutting plane segmentation. Mach Vis Appl 21:667–676CrossRef Duan G, Chen YW, Sukegawa T (2010) Automatic optical flank wear measurement of microdrills using level set for cutting plane segmentation. Mach Vis Appl 21:667–676CrossRef
34.
Zurück zum Zitat Lins RG, de Araujo PRM, Corazzim M (2020) In-process machine vision monitoring of tool wear for cyber-physical production systems. Robot Comput-Integr Manuf 61:101859 Lins RG, de Araujo PRM, Corazzim M (2020) In-process machine vision monitoring of tool wear for cyber-physical production systems. Robot Comput-Integr Manuf 61:101859
35.
Zurück zum Zitat Kassim AA, Mannan MA, Jing M (2000) Machine tool condition monitoring using workpiece surface texture analysis. Mach Vis Appl 11:257–263CrossRef Kassim AA, Mannan MA, Jing M (2000) Machine tool condition monitoring using workpiece surface texture analysis. Mach Vis Appl 11:257–263CrossRef
36.
Zurück zum Zitat Kassim AA, Mian Z, Mannan MA (2006) Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Mach Vis Appl 17:327–336CrossRef Kassim AA, Mian Z, Mannan MA (2006) Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Mach Vis Appl 17:327–336CrossRef
37.
Zurück zum Zitat Bhat NN, Dutta S, Vashisth T, Pal S, Pal SK, Sen R (2016) Tool condition monitoring by SVM classification of machined surface images in turning. Int J Adv Manuf Technol 83:1487–1502CrossRef Bhat NN, Dutta S, Vashisth T, Pal S, Pal SK, Sen R (2016) Tool condition monitoring by SVM classification of machined surface images in turning. Int J Adv Manuf Technol 83:1487–1502CrossRef
38.
Zurück zum Zitat Bhat NN, Dutta S, Pal SK, Pal S (2016) Tool condition classification in turning process using hidden Markov model based on texture analysis of machined surface images. Measurement 90:500–509CrossRef Bhat NN, Dutta S, Pal SK, Pal S (2016) Tool condition classification in turning process using hidden Markov model based on texture analysis of machined surface images. Measurement 90:500–509CrossRef
39.
Zurück zum Zitat Kassim AA, Mian Z, Mannan MA (2004) Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recogn 37:1925–1933CrossRef Kassim AA, Mian Z, Mannan MA (2004) Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recogn 37:1925–1933CrossRef
40.
Zurück zum Zitat Kassim AA, Mannan MA, Mian Z (2007) Texture analysis methods for tool condition monitoring. Image Vis Comput 25:1080–1090CrossRef Kassim AA, Mannan MA, Mian Z (2007) Texture analysis methods for tool condition monitoring. Image Vis Comput 25:1080–1090CrossRef
41.
Zurück zum Zitat Dutta S, Datta A, Chakladar ND, Pal SK, Mukhopadhyay S, Sen R (2012) Detection of tool condition from the turned surface images using an accurate grey level co-occurrence technique. Precis Eng 36:458–466CrossRef Dutta S, Datta A, Chakladar ND, Pal SK, Mukhopadhyay S, Sen R (2012) Detection of tool condition from the turned surface images using an accurate grey level co-occurrence technique. Precis Eng 36:458–466CrossRef
42.
Zurück zum Zitat Gadelmawla ES, Al-Mufadi FA, Al-Aboodi AS (2013) Calculation of the machining time of cutting tools from captured images of machined parts using image texture features. Proc Inst Mech Eng Part B: J Eng Manuf 228:203–214CrossRef Gadelmawla ES, Al-Mufadi FA, Al-Aboodi AS (2013) Calculation of the machining time of cutting tools from captured images of machined parts using image texture features. Proc Inst Mech Eng Part B: J Eng Manuf 228:203–214CrossRef
43.
Zurück zum Zitat Datta A, Dutta S, Pal SK, Sen R (2013) Progressive cutting tool wear detection from machined surface images using Voronoi tessellation method. J Mater Process Technol 213:2339–2349CrossRef Datta A, Dutta S, Pal SK, Sen R (2013) Progressive cutting tool wear detection from machined surface images using Voronoi tessellation method. J Mater Process Technol 213:2339–2349CrossRef
44.
Zurück zum Zitat Dutta S, Kanwat A, Pal SK, Sen R (2013) Correlation study of tool flank wear with machined surface texture in end milling. Measurement 46:4249–4260CrossRef Dutta S, Kanwat A, Pal SK, Sen R (2013) Correlation study of tool flank wear with machined surface texture in end milling. Measurement 46:4249–4260CrossRef
45.
Zurück zum Zitat Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis Eng 43:34–42CrossRef Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis Eng 43:34–42CrossRef
46.
Zurück zum Zitat Dutta S, Pal SK, Sen R (2016) Tool condition monitoring in turning by applying machine vision. J Manuf Sci Eng 138 Dutta S, Pal SK, Sen R (2016) Tool condition monitoring in turning by applying machine vision. J Manuf Sci Eng 138
47.
Zurück zum Zitat Dutta S, Pal SK, Sen R (2018) Progressive tool condition monitoring of end milling from machined surface images. Proc Inst Mech Eng Part B J EngManuf 232:251–326CrossRef Dutta S, Pal SK, Sen R (2018) Progressive tool condition monitoring of end milling from machined surface images. Proc Inst Mech Eng Part B J EngManuf 232:251–326CrossRef
48.
Zurück zum Zitat Ren L, Zhang G, Wang Y, Zhang Q, Wang F, Huang Y (2019) A new in-process material removal rate monitoring approach in abrasive belt grinding. Int J Adv Manuf Technol 104(5–8):2715–2726CrossRef Ren L, Zhang G, Wang Y, Zhang Q, Wang F, Huang Y (2019) A new in-process material removal rate monitoring approach in abrasive belt grinding. Int J Adv Manuf Technol 104(5–8):2715–2726CrossRef
49.
Zurück zum Zitat Dhanasekar B, Ramamoorthy B (2010) Restoration of blurred images for surface roughness evaluation using machine vision. Tribol Int 43:268–276CrossRef Dhanasekar B, Ramamoorthy B (2010) Restoration of blurred images for surface roughness evaluation using machine vision. Tribol Int 43:268–276CrossRef
50.
Zurück zum Zitat Al-Kindi G, Zughaer H (2012) An approach to improved CNC machining using vision-based system. Mater Manuf Process 27:765–774CrossRef Al-Kindi G, Zughaer H (2012) An approach to improved CNC machining using vision-based system. Mater Manuf Process 27:765–774CrossRef
51.
Zurück zum Zitat Bamberger H, Ramachandran S, Hong E, Katz R (2011) Identification of machining chatter marks on surfaces of automotive valve seats. Trans ASME-J Manuf Sci Eng 133:0410031–0410037CrossRef Bamberger H, Ramachandran S, Hong E, Katz R (2011) Identification of machining chatter marks on surfaces of automotive valve seats. Trans ASME-J Manuf Sci Eng 133:0410031–0410037CrossRef
52.
Zurück zum Zitat Samtaş G (2014) Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network. Int J Adv Manuf Technol 73:353–364CrossRef Samtaş G (2014) Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network. Int J Adv Manuf Technol 73:353–364CrossRef
53.
Zurück zum Zitat Tootooni MS, Liu C, Roberson D, Donovan R, Rao PK, Kong ZJ, Bukkapatnam ST (2016) Online non-contact surface finish measurement in machining using graph theory-based image analysis. J Manuf Syst 41:266–276CrossRef Tootooni MS, Liu C, Roberson D, Donovan R, Rao PK, Kong ZJ, Bukkapatnam ST (2016) Online non-contact surface finish measurement in machining using graph theory-based image analysis. J Manuf Syst 41:266–276CrossRef
54.
Zurück zum Zitat Sun H, Gao D, Zhao Z, Tang X (2017) An approach to in-process surface texture condition monitoring. Robot Comput-Integr Manuf 48:254–262CrossRef Sun H, Gao D, Zhao Z, Tang X (2017) An approach to in-process surface texture condition monitoring. Robot Comput-Integr Manuf 48:254–262CrossRef
55.
Zurück zum Zitat Diao S, Chen X, Luo J (2018) Development and experimental evaluation of a 3D vision system for grinding robot. Sensors 18(9):3078CrossRef Diao S, Chen X, Luo J (2018) Development and experimental evaluation of a 3D vision system for grinding robot. Sensors 18(9):3078CrossRef
56.
Zurück zum Zitat Mei B, Zhu W, Ke Y (2018) Positioning variation analysis and control for automated drilling in aircraft manufacturing. Assem Autom Mei B, Zhu W, Ke Y (2018) Positioning variation analysis and control for automated drilling in aircraft manufacturing. Assem Autom
57.
Zurück zum Zitat Yu L, Bi Q, Ji Y, Fan Y, Huang N, Wang Y (2019) Vision based in-process inspection for countersink in automated drilling and riveting. Precis Eng 58:35–46CrossRef Yu L, Bi Q, Ji Y, Fan Y, Huang N, Wang Y (2019) Vision based in-process inspection for countersink in automated drilling and riveting. Precis Eng 58:35–46CrossRef
58.
Zurück zum Zitat Shao J, Du D, Chang B, Shi H (2012) Automatic weld defect detection based on potential defect tracking in real-time radiographic image sequence. NDT and E Int 46:14–21CrossRef Shao J, Du D, Chang B, Shi H (2012) Automatic weld defect detection based on potential defect tracking in real-time radiographic image sequence. NDT and E Int 46:14–21CrossRef
59.
Zurück zum Zitat Zou Y, Du D, Chang B, Ji L, Pan J (2015) Automatic weld defect detection method based on Kalman filtering for real-time radiographic inspection of spiral pipe. NDT and E Int 72:1–9CrossRef Zou Y, Du D, Chang B, Ji L, Pan J (2015) Automatic weld defect detection method based on Kalman filtering for real-time radiographic inspection of spiral pipe. NDT and E Int 72:1–9CrossRef
60.
Zurück zum Zitat Chu HH, Wang ZY (2016) A vision-based system for post-welding quality measurement and defect detection. Int J Adv Manuf Technol 86(9–12):3007–3014CrossRef Chu HH, Wang ZY (2016) A vision-based system for post-welding quality measurement and defect detection. Int J Adv Manuf Technol 86(9–12):3007–3014CrossRef
61.
Zurück zum Zitat Li Y, Li YF, Wang QL, Xu D, Tan M (2009) Measurement and defect detection of the weld bead based on online vision inspection. IEEE Trans Instrum Meas 59(7):1841–1849 Li Y, Li YF, Wang QL, Xu D, Tan M (2009) Measurement and defect detection of the weld bead based on online vision inspection. IEEE Trans Instrum Meas 59(7):1841–1849
62.
Zurück zum Zitat Alfaro SCA, Vargas JAR, de Carvalho GC, de Souza GG (2015) Characterization of “humping” in the GTA welding process using infrared images. J Mater Process Technol 223:216–224CrossRef Alfaro SCA, Vargas JAR, de Carvalho GC, de Souza GG (2015) Characterization of “humping” in the GTA welding process using infrared images. J Mater Process Technol 223:216–224CrossRef
63.
Zurück zum Zitat Chu HH, Wang ZY (2017) A study on welding quality inspection system for shell-tube heat exchanger based on machine vision. Int J Precis Eng Manuf 18(6):825–834CrossRef Chu HH, Wang ZY (2017) A study on welding quality inspection system for shell-tube heat exchanger based on machine vision. Int J Precis Eng Manuf 18(6):825–834CrossRef
64.
Zurück zum Zitat Sassi P, Tripicchio P, Avizzano CA (2019) A smart monitoring system for automatic welding defect detection. IEEE Trans Industr Electron 66(12):9641–9650CrossRef Sassi P, Tripicchio P, Avizzano CA (2019) A smart monitoring system for automatic welding defect detection. IEEE Trans Industr Electron 66(12):9641–9650CrossRef
65.
Zurück zum Zitat Bhat NN, Kumari K, Dutta S, Pal SK, Pal S (2015) Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images. J Manuf Process 20:274–281CrossRef Bhat NN, Kumari K, Dutta S, Pal SK, Pal S (2015) Friction stir weld classification by applying wavelet analysis and support vector machine on weld surface images. J Manuf Process 20:274–281CrossRef
66.
Zurück zum Zitat Sudhagar S, Sakthivel M, Ganeshkumar P (2019) Monitoring of friction stir welding based on vision system coupled with Machine learning algorithm. Measurement 144:135–143CrossRef Sudhagar S, Sakthivel M, Ganeshkumar P (2019) Monitoring of friction stir welding based on vision system coupled with Machine learning algorithm. Measurement 144:135–143CrossRef
67.
Zurück zum Zitat Ranjan R, Khan AR, Parikh C, Jain R, Mahto RP, Pal S, Pal SK, Chakravarty D (2016) Classification and identification of surface defects in friction stir welding: an image processing approach. J Manuf Process 22:237–253CrossRef Ranjan R, Khan AR, Parikh C, Jain R, Mahto RP, Pal S, Pal SK, Chakravarty D (2016) Classification and identification of surface defects in friction stir welding: an image processing approach. J Manuf Process 22:237–253CrossRef
68.
Zurück zum Zitat Parikh C, Ranjan R, Khan AR, Jain R, Mahto RP, Chakravarty D, Pal S, Pal SK (2017) Volumetric defect analysis in friction stir welding based on three dimensional reconstructed images. J Manuf Process 29:96–112CrossRef Parikh C, Ranjan R, Khan AR, Jain R, Mahto RP, Chakravarty D, Pal S, Pal SK (2017) Volumetric defect analysis in friction stir welding based on three dimensional reconstructed images. J Manuf Process 29:96–112CrossRef
69.
Zurück zum Zitat Sun J, Li C, Wu XJ, Palade V, Fang W (2019) An effective method of weld defect detection and classification based on machine vision. IEEE Trans Industr Inf 15(12):6322–6333CrossRef Sun J, Li C, Wu XJ, Palade V, Fang W (2019) An effective method of weld defect detection and classification based on machine vision. IEEE Trans Industr Inf 15(12):6322–6333CrossRef
70.
Zurück zum Zitat Kim CH, Ahn DC (2012) Coaxial monitoring of keyhole during Yb: YAG laser welding. Opt Laser Technol 44(6):1874–1880CrossRef Kim CH, Ahn DC (2012) Coaxial monitoring of keyhole during Yb: YAG laser welding. Opt Laser Technol 44(6):1874–1880CrossRef
71.
Zurück zum Zitat Luo M, Shin YC (2015) Estimation of keyhole geometry and prediction of welding defects during laser welding based on a vision system and a radial basis function neural network. Int J Adv Manuf Technol 81(1):263–276CrossRef Luo M, Shin YC (2015) Estimation of keyhole geometry and prediction of welding defects during laser welding based on a vision system and a radial basis function neural network. Int J Adv Manuf Technol 81(1):263–276CrossRef
72.
Zurück zum Zitat Židek K, Piteľ J, Adámek M, Lazorík P, Hošovský A (2020) Digital twin of experimental smart manufacturing assembly system for Industry 4.0 concept. Sustainability 12(9):3658 Židek K, Piteľ J, Adámek M, Lazorík P, Hošovský A (2020) Digital twin of experimental smart manufacturing assembly system for Industry 4.0 concept. Sustainability 12(9):3658
73.
Zurück zum Zitat Chauhan V, Surgenor B (2017) Fault detection and classification in automated assembly machines using machine vision. Int J Adv Manuf Technol 90(9–12):2491–2512CrossRef Chauhan V, Surgenor B (2017) Fault detection and classification in automated assembly machines using machine vision. Int J Adv Manuf Technol 90(9–12):2491–2512CrossRef
74.
Zurück zum Zitat Xu Y, Lv N, Fang G, Du S, Zhao W, Ye Z, Chen S (2017) Welding seam tracking in robotic gas metal arc welding. J Mater Process Technol 248:18–30CrossRef Xu Y, Lv N, Fang G, Du S, Zhao W, Ye Z, Chen S (2017) Welding seam tracking in robotic gas metal arc welding. J Mater Process Technol 248:18–30CrossRef
75.
Zurück zum Zitat Eckhart M, Ekelhart A (2019) Digital twins for cyber-physical systems security: State of the art and outlook. In: Security and quality in cyber-physical systems engineering. Springer, Cham, pp 383–412 Eckhart M, Ekelhart A (2019) Digital twins for cyber-physical systems security: State of the art and outlook. In: Security and quality in cyber-physical systems engineering. Springer, Cham, pp 383–412
78.
Zurück zum Zitat Burke MW (1996) Image acquisition: handbook of machine vision engineering. Chapman and Hall, London Burke MW (1996) Image acquisition: handbook of machine vision engineering. Chapman and Hall, London
79.
Zurück zum Zitat Saba MH, Mukherjee S, Dutta S, Mallisetty PK, Murmu NC (2020) Electrohydrodynamic jet printing for desired print diameter. Mater Today: Proc Saba MH, Mukherjee S, Dutta S, Mallisetty PK, Murmu NC (2020) Electrohydrodynamic jet printing for desired print diameter. Mater Today: Proc
80.
Zurück zum Zitat Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, NJ, USA Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall, NJ, USA
81.
Zurück zum Zitat Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Grap Image Process 39(3):355–368CrossRef Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Grap Image Process 39(3):355–368CrossRef
82.
Zurück zum Zitat Lee BY, Yu SF, Juan H (2004) The model of surface roughness inspection by vision system in turning. Mechatronics 14(1):129–141CrossRef Lee BY, Yu SF, Juan H (2004) The model of surface roughness inspection by vision system in turning. Mechatronics 14(1):129–141CrossRef
83.
Zurück zum Zitat Petrosian AA, Meyer FG (2001) Wavelets in signal and image analysis: from theory to practice. Kluwer Academic, Boston Petrosian AA, Meyer FG (2001) Wavelets in signal and image analysis: from theory to practice. Kluwer Academic, Boston
84.
Zurück zum Zitat Petrou M, Sevilla PG (2006) Image processing dealing with texture. Wiley, UK Petrou M, Sevilla PG (2006) Image processing dealing with texture. Wiley, UK
85.
Zurück zum Zitat Mallat S (1999) A wavelet tour of signal processing. Academic Press, London, UK Mallat S (1999) A wavelet tour of signal processing. Academic Press, London, UK
Metadaten
Titel
Image Processing for Digital Twin
verfasst von
Surjya Kanta Pal
Debasish Mishra
Arpan Pal
Samik Dutta
Debashish Chakravarty
Srikanta Pal
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-81815-9_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.