Skip to main content
Erschienen in: Journal of Scientific Computing 2/2016

05.09.2015

Image Reconstruction from Undersampled Fourier Data Using the Polynomial Annihilation Transform

verfasst von: Rick Archibald, Anne Gelb, Rodrigo B. Platte

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, \(l^1\) regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more \(l^1\) regularization terms. The Split Bregman Algorithm provides a fast explicit solution for the case when TV is used for the \(l^1\) regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an \(l^1\) regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the \(l^1\) regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Technically, the \(l^0\) norm of an expression is a better measure of sparsity. However, the \(l^0\) norm does not meet the convexity requirements and is very slow to compute. Additional detail on using the \(l^1\) norm in place of the \(l^0\) in order to measure sparsity can be found in [7].
 
2
This was a departure from the work done in [25] which assumed the given data were sampled in the physical domain, which would imply simulating the Fourier data of the underlying function rather than collecting them.
 
3
In [28] our method compared favorably to multi-wavelet constructed regularization terms [24]. We do not repeat those experiments here.
 
4
For simplicity we choose \(2N+1\) equally spaced grid points to match the number of Fourier coefficients. The techniques described in this paper are easily extended to different gridding schemes in the image domain.
 
5
In that case, the given data were blurred and/or noisy grid point data in the one-dimensional image domain.
 
6
Although designed for MRI data, it is applicable whenever data are sampled in the Fourier domain, especially when dimension reduction is desirable.
 
7
We tried a variety of parameters in our experiments to ensure that our comparisons were fair. As it turned out, the default parameters yielded the best results.
 
Literatur
1.
Zurück zum Zitat Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005)MathSciNetCrossRefMATH Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)CrossRef Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)CrossRef
4.
Zurück zum Zitat Candès, E.J., Romberg, J.: Signal recovery from random projections. In Proc. SPIE Comput. Imaging III 5674, 76–186 (2005)CrossRef Candès, E.J., Romberg, J.: Signal recovery from random projections. In Proc. SPIE Comput. Imaging III 5674, 76–186 (2005)CrossRef
5.
Zurück zum Zitat Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)MathSciNetCrossRefMATH Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Donoho, D.: For most large underdetermined systems of linear equations the minimal \(l^1\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)MathSciNetCrossRefMATH Donoho, D.: For most large underdetermined systems of linear equations the minimal \(l^1\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Donoho, D., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)MathSciNetCrossRefMATH Donoho, D., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)CrossRef Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)CrossRef
10.
Zurück zum Zitat Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24(5), 1754–1767 (2003)MathSciNetCrossRefMATH Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24(5), 1754–1767 (2003)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Ellsworth, M., Thomas, C.: Seeing Images Through the Clouds, vol. 4, pp. 26–27. Unmanned Tech Solutions (2014) Ellsworth, M., Thomas, C.: Seeing Images Through the Clouds, vol. 4, pp. 26–27. Unmanned Tech Solutions (2014)
12.
13.
Zurück zum Zitat Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26 Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26
14.
Zurück zum Zitat Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences. Springer, pp. 95–110 (2008) Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences. Springer, pp. 95–110 (2008)
16.
18.
Zurück zum Zitat He, L., Chang, T.-C., Osher, S.: MR image reconstruction from sparse radial samples by using iterative refinement procedures. In: Proceedings of the 13th Annual Meeting ISMRM, p. 696 (2006) He, L., Chang, T.-C., Osher, S.: MR image reconstruction from sparse radial samples by using iterative refinement procedures. In: Proceedings of the 13th Annual Meeting ISMRM, p. 696 (2006)
19.
Zurück zum Zitat Krzakala, F., Mézard, M., Sausset, F., Sun, Y., Zdeborová, L.: Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. J. Stat. Mech. Theory Exp. 2012(08), P08009 (2012)CrossRef Krzakala, F., Mézard, M., Sausset, F., Sun, Y., Zdeborová, L.: Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices. J. Stat. Mech. Theory Exp. 2012(08), P08009 (2012)CrossRef
20.
Zurück zum Zitat Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef
21.
Zurück zum Zitat Moulin, P.: A wavelet regularization method for diffuse radar-target imaging and speckle-noise reduction. J. Math. Imaging Vis. 3(1), 123–134 (1993)MathSciNetCrossRefMATH Moulin, P.: A wavelet regularization method for diffuse radar-target imaging and speckle-noise reduction. J. Math. Imaging Vis. 3(1), 123–134 (1993)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)MathSciNetCrossRefMATH Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)MathSciNetCrossRefMATH
23.
24.
Zurück zum Zitat Schiavazzi, D., Doostan, A., Iaccarino, G.: Sparse multiresolution stochastic approximation for uncertainty quantification. Recent Adv. Sci. Comput. Appl. 586, 295 (2013)MathSciNetCrossRefMATH Schiavazzi, D., Doostan, A., Iaccarino, G.: Sparse multiresolution stochastic approximation for uncertainty quantification. Recent Adv. Sci. Comput. Appl. 586, 295 (2013)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Stefan, W., Renaut, R., Gelb, A.: Improved total variation type regularizations using higher order edge detectors. SIAM J. Imaging Sci. 3(2), 232–2516 (2010)MathSciNetCrossRefMATH Stefan, W., Renaut, R., Gelb, A.: Improved total variation type regularizations using higher order edge detectors. SIAM J. Imaging Sci. 3(2), 232–2516 (2010)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Trzasko, J., Manduca, A., Borisch, E.: Sparse MRI reconstruction via multiscale l0-continuation. In: Statistical Signal Processing 2007. SSP ’07. IEEE/SP 14th Work, pp. 176–180, August 2007 Trzasko, J., Manduca, A., Borisch, E.: Sparse MRI reconstruction via multiscale l0-continuation. In: Statistical Signal Processing 2007. SSP ’07. IEEE/SP 14th Work, pp. 176–180, August 2007
27.
Zurück zum Zitat Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. CAAM Tech, Reports (2007) Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. CAAM Tech, Reports (2007)
29.
Zurück zum Zitat Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)MathSciNetCrossRefMATH Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)MathSciNetCrossRefMATH
Metadaten
Titel
Image Reconstruction from Undersampled Fourier Data Using the Polynomial Annihilation Transform
verfasst von
Rick Archibald
Anne Gelb
Rodrigo B. Platte
Publikationsdatum
05.09.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0088-2

Weitere Artikel der Ausgabe 2/2016

Journal of Scientific Computing 2/2016 Zur Ausgabe