Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.01.2018 | Original Article | Ausgabe 5/2019

International Journal of Machine Learning and Cybernetics 5/2019

Image-set based face recognition using K-SVD dictionary learning

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 5/2019
Autoren:
Jingjing Liu, Wanquan Liu, Shiwei Ma, Meixi Wang, Ling Li, Guanghua Chen

Abstract

With rapid development of digital imaging and communication technologies, image set based face recognition (ISFR) is becoming increasingly important and popular. On one hand, easy capture of large number of samples for each subject in training and testing makes us have more information for possible utilization. On the other hand, this large size of data will eventually increase training and classification time and possibly reduce the recognition rate if they are not used appropriately. In this paper, a new face recognition approach is proposed based on the K-SVD dictionary learning to solve this large sample problem by using joint sparse representation. The core idea of this proposed approach is to learn variation dictionaries from gallery and probe face images separately, and then we propose an improved joint sparse representation, which employs the information learned from both gallery and probe samples effectively. Finally, the proposed method is compared with some related methods on several popular face databases, including YaleB, AR, CMU-PIE, Georgia and LFW databases. The experimental results show that the proposed method outperforms several related face recognition methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

International Journal of Machine Learning and Cybernetics 5/2019 Zur Ausgabe