2015 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Surface Science Tools for Nanomaterials Characterization
This chapter introduces into the principles of different force microscopic approaches that sense a magnetic probe-sample force to study magnetism of micro- and (sub)nanometer-sized objects. Although all of them are capable to characterize magnetic properties on small length scales, their applicability depends strongly on the object (e.g., nm-thin magnetic films, magnetic nanoparticles, electronic and nuclear spins) to be investigated. A comparison of their application range will be given, which allows identifying the method most suitable for the intended measurement. Finally, the discussion of each approach is complemented by an overview about current exemplary applications.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Freeman MR, Choi BC (2001) Advances in magnetic microscopy. Science 294(5546):1484–1488
CrossRef
2.
Dan Dahlberg E, Proksch R (1999) Magnetic microscopies: the new additions. J Magn Magn Mater 200(1):720–728
CrossRef
3.
Allenspach R (1994) Ultrathin films: magnetism on the microscopic scale. J Magn Magn Mater 129(2):160–185
CrossRef
4.
Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180
CrossRef
5.
Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Physical Rev Lett 49(1):57
CrossRef
6.
Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930
CrossRef
7.
Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Surf Sci 189:1–6
CrossRef
8.
Saenz JJ, Garcia N, Grutter P, Meyer E, Heinzelmann H, Wiesendanger R, Guntherodt HJ et al (1987) Observation of magnetic forces by the atomic force microscope. J Appl Phys 62(10):4293–4295
CrossRef
9.
Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457
CrossRef
10.
Rugar D, Mamin HJ, Guethner P, Lambert SE, Stern JE, McFadyen I, Yogi T (1990) Magnetic force microscopy: general principles and application to longitudinal recording media. J Appl Phys 68(3):1169–1183
CrossRef
11.
Wiesendanger R, Güntherodt HJ, Güntherodt G, Gambino RJ, Ruf R (1990) Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 65(2):247
CrossRef
12.
Betzig E, Trautman JK, Wolfe R, Gyorgy EM, Finn PL, Kryder MH, Chang CH (1992) Near-field magneto-optics and high density data storage. Appl Phys Lett 61(2):142–144
CrossRef
13.
Silva TJ, Schultz S, Weller D (1994) Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials. Appl Phys Lett 65(6):658–660
CrossRef
14.
Chapman JN, McFadyen IR, McVitie S (1990) Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures. Magn, IEEE Trans 26(5):1506–1511
CrossRef
15.
Kirk KJ, Chapman JN, Wilkinson CDW (1999) Lorentz microscopy of small magnetic structures. J Appl Phys 85(8):5237–5242
CrossRef
16.
Lichte H (1986) Electron holography approaching atomic resolution. Ultramicroscopy 20(3):293–304
CrossRef
17.
Tonomura A (1987) Applications of electron holography. Rev Mod Phys 59(3):639
CrossRef
18.
Kirtley JR, Wikswo JP Jr (1999) Scanning SQUID microscopy. Annu Rev mater Sci 29(1):117–148
CrossRef
19.
Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, Chang TY et al (1992) Scanning hall probe microscopy. Appl Phys Lett 61(16):1974–1976
CrossRef
20.
Oral A, Bending SJ, Henini M (1996) Real-time scanning hall probe microscopy. Appl Phys Lett 69(9):1324–1326
CrossRef
21.
Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Wrachtrup J et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455(7213):648–651
CrossRef
22.
Kolkowitz S, Unterreithmeier QP, Bennett SD, Lukin MD (2012) Sensing distant nuclear spins with a single electron spin. Phys Rev Lett 109(13):137601
CrossRef
23.
Grinolds MS, Hong S, Maletinsky P, Luan L, Lukin MD, Walsworth RL, Yacoby A (2013) Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat Phys 9:215–219
CrossRef
24.
Bode M (2003) Spin-polarized scanning tunnelling microscopy. Rep Prog Phys 66(4):523
CrossRef
25.
Wiebe J, Zhou L, Wiesendanger R (2011) Atomic magnetism revealed by spin-resolved scanning tunnelling spectroscopy. J Phys D Appl Phys 44(46):464009
CrossRef
26.
Wiesendanger R (2011) Single-atom magnetometry. Curr Opin Solid State Mater Sci 15(1):1–7
CrossRef
27.
Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60(6):1438–1444
CrossRef
28.
Hartmann U (1991) van der Waals interactions between sharp probes and flat sample surfaces. Phys Rev B 43(3):2404
CrossRef
29.
Argento C, French RH (1996) Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J Appl Phys 80(11):6081–6090
CrossRef
30.
Erlandsson R, Hadziioannou G, Mate CM, McClelland GM, Chiang S (1988) Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J Chem Phys 89:5190
CrossRef
31.
Mate CM, McClelland GM, Erlandsson R, Chiang S (1993) Atomic-scale friction of a tungsten tip on a graphite surface. In: Scanning tunneling microscopy. Springer Netherlands, pp 226–229. ISBN: 978-0-7923-2065-4
32.
Vanossi A, Manini N, Urbakh M, Zapperi S, Tosatti E (2013) Colloquium: modeling friction: from nanoscale to mesoscale. Rev Mod Phys 85:529–552
CrossRef
33.
Borkovec M, Papastavrou G (2008) Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge. Curr Opin Colloid Interface Sci 13(6):429–437
CrossRef
34.
Block S, Helm CA (2007) Measurement of long-ranged steric forces between polyelectrolyte layers physisorbed from 1 M NaCl. Phys Rev E 76(3):030801
CrossRef
35.
Block S, Helm CA (2008) Conformation of poly (styrene sulfonate) layers physisorbed from high salt solution studied by force measurements on two different length scales. J Phys Chem B 112(31):9318–9327
CrossRef
36.
Drechsler A, Synytska A, Uhlmann P, Elmahdy MM, Stamm M, Kremer F (2009) Interaction forces between microsized silica particles and weak polyelectrolyte brushes at varying pH and salt concentration. Langmuir 26(9):6400–6410
CrossRef
37.
Quate CF (1994) The AFM as a tool for surface imaging. Surf Sci 299:980–995
CrossRef
38.
Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy: the lab on a tip. Springer, Berlin
CrossRef
39.
Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1):1–152
CrossRef
40.
Bhushan B (ed) (2010) Springer handbook of nanotechnology. Springer-Verlag Berlin Heidelberg, ISBN: 978-3-642-02524-2
41.
Barth C, Foster AS, Henry CR, Shluger AL (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23(4):477–501
CrossRef
42.
Senden TJ (2001) Force microscopy and surface interactions. Curr Opin Colloid Interface Sci 6(2):95–101
CrossRef
43.
Stokey WF (1989) Shock and vibration handbook. McGraw-Hill, New York, pp 7.1–7.44
44.
Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Oxford, Pergamon
45.
Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84(1):64–76
CrossRef
46.
Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1
CrossRef
47.
Salapaka MV, Bergh HS, Lai J, Majumdar A, McFarland E (1997) Multi-mode noise analysis of cantilevers for scanning probe microscopy. J Appl Phys 81(6):2480–2487
CrossRef
48.
Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75(6):1988–1996
CrossRef
49.
Chester W (1979) Oscillations. In: Mechanics. George Allen & Unwin London, pp 136–173
50.
Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668
CrossRef
51.
Giessibl FJ (1997) Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys Rev B 56(24):16010
CrossRef
52.
Guggisberg M, Bammerlin M, Loppacher C, Pfeiffer O, Abdurixit A, Barwich V, Güntherodt HJ et al (2000) Separation of interactions by noncontact force microscopy. Phys Rev B 61(16):11151
CrossRef
53.
Giessibl FJ (2001) A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy. Appl Phys Lett 78(1):123–125
CrossRef
54.
Sader JE, Jarvis SP (2004) Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl Phys Lett 84(10):1801–1803
CrossRef
55.
Sader JE, Uchihashi T, Higgins MJ, Farrell A, Nakayama Y, Jarvis SP (2005) Quantitative force measurements using frequency modulation atomic force microscopy – theoretical foundations. Nanotechnology 16(3):S94
CrossRef
56.
Welker J, Illek E, Giessibl FJ (2012) Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy. Beilstein J Nanotechnol 3(1):238–248
CrossRef
57.
Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64(2):403–405
CrossRef
58.
Hutter JL, Bechhoefer J (1993) Calibration of atomic‐force microscope tips. Rev Sci Instrum 64:1868
CrossRef
59.
Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66(7):3789–3798
CrossRef
60.
Sader JE, Chon JW, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967
CrossRef
61.
Chon JW, Mulvaney P, Sader JE (2000) Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J Appl Phys 87(8):3978–3988
CrossRef
62.
Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Tendler SJB et al (2003) Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14(1):1
CrossRef
63.
Cook SM, Schäffer TE, Chynoweth KM, Wigton M, Simmonds RW, Lang KM (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17(9):2135
CrossRef
64.
Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Elings V et al (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64(13):1738–1740
CrossRef
65.
Garcia R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60(7):4961
CrossRef
66.
Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope–force mapping and profiling on a sub 100 Å scale. J Appl Phys 61(10):4723–4729
CrossRef
67.
Anselmetti D, Luthi R, Meyer E, Richmond T, Dreier M, Frommer JE, Guntherodt HJ (1994) Attractive-mode imaging of biological materials with dynamic force microscopy. Nanotechnology 5(2):87
CrossRef
68.
Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47(6):197–301
CrossRef
69.
Higgins MJ, Riener CK, Uchihashi T, Sader JE, McKendry R, Jarvis SP (2005) Frequency modulation atomic force microscopy: a dynamic measurement technique for biological systems. Nanotechnology 16(3):S85
CrossRef
70.
Grütter P, Mamin HJ, Rugar D (1992) Magnetic Force Microscopy (MFM). In: Wiesendanger R, Güntherodt H-J (eds) Scanning tunneling microscopy II. Springer series in surface sciences 28. Springer, Berlin, pp 151–207
71.
Giessibl FJ, Pielmeier F, Eguchi T, An T, Hasegawa Y (2011) Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys Rev B 84(12):125409
CrossRef
72.
Yuan CW, Batalla E, Zacher M, De Lozanne AL, Kirk MD, Tortonese M (1994) Low temperature magnetic force microscope utilizing a piezoresistive cantilever. Appl Phys Lett 65(10):1308–1310
CrossRef
73.
Giessibl FJ, Trafas BM (1994) Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum. Rev Sci Instrum 65(6):1923–1929
CrossRef
74.
Arlett JL, Maloney JR, Gudlewski B, Muluneh M, Roukes ML (2006) Self-sensing micro-and nanocantilevers with attonewton-scale force resolution. Nano Lett 6(5):1000–1006
CrossRef
75.
Alexander SLOJVPKM, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Gurley J et al (1989) An atomic-resolution atomic-force microscope implemented using an optical lever. J Appl Phys 65(1):164–167
CrossRef
76.
Putman CA, De Grooth BG, Van Hulst NF, Greve J (1992) A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J Appl Phys 72(1):6–12
CrossRef
77.
Colchero J, Cuenca M, Martinez JF, Abad J, García BP, Palacios-Lidón E, Abellán J (2011) Thermal frequency noise in dynamic scanning force microscopy. J Appl Phys 109(2):024310–024310
CrossRef
78.
Erlandsson R, McClelland GM, Mate CM, Chiang S (1988) Atomic force microscopy using optical interferometry. J Vacuum Sci Technol A Vacuum Surf Films 6(2):266–270
CrossRef
79.
Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59(11):2337–2340
CrossRef
80.
Hoogenboom BW, Frederix PLTM, Yang JL, Martin S, Pellmont Y, Steinacher M, Hug HJ et al (2005) A Fabry–Perot interferometer for micrometer-sized cantilevers. Appl Phys Lett 86(7):074101–074101
CrossRef
81.
Poggio M, Degen CL (2010) Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21(34):342001
CrossRef
82.
Sidles JA, Garbini JL, Drobny GP (1992) The theory of oscillator coupled magnetic resonance with potential applications to molecular imaging. Rev Sci Instrum 63(8):3881–3899
CrossRef
83.
Sidles JA, Rugar D (1993) Signal-to-noise ratios in inductive and mechanical detection of magnetic resonance. Phys Rev Lett 70(22):3506
CrossRef
84.
Kaiser U, Schwarz A, Wiesendanger R (2007) Magnetic exchange force microscopy with atomic resolution. Nature 446(7135):522–525
CrossRef
85.
Porthun S, Abelmann L, Lodder C (1998) Magnetic force microscopy of thin film media for high density magnetic recording. J Magn Magn Mater 182(1):238–273
CrossRef
86.
Hartmann U (1999) Magnetic force microscopy. Ann Rev Mater Sci 29(1):53–87
CrossRef
87.
Koblischka MR, Hartmann U (2003) Recent advances in magnetic force microscopy. Ultramicroscopy 97(1):103–112
CrossRef
88.
Zhu X, Grütter P (2004) Imaging, manipulation, and spectroscopic measurements of nanomagnets by magnetic force microscopy. MRS Bull 29(07):457–462
CrossRef
89.
Schwarz A, Wiesendanger R (2008) Magnetic sensitive force microscopy. Nano Today 3(1):28–39
CrossRef
90.
Agarwal G (2009) Characterization of magnetic nanoparticles using magnetic force microscopy. Nanotechnologies for the life sciences. In: Kumar CSSR (ed) Nanotechnologies for the life sciences, vol 4, Magnetic Nanomaterials. Wiley, Weinheim
91.
Wadas A, Grütter P (1989) Theoretical approach to magnetic force microscopy. Phys Rev B 39(16):12013
CrossRef
92.
Hartmann U (1989) The point dipole approximation in magnetic force microscopy. Phys Lett A 137(9):475–478
CrossRef
93.
Hartmann U (1990) Theory of magnetic force microscopy. J Vacuum Sci Technol A Vacuum Surfaces Films 8(1):411–415
CrossRef
94.
Schönenberger C, Alvarado SF (1990) Understanding magnetic force microscopy. Zeitschrift für Physik B Condensed Matter 80(3):373–383
CrossRef
95.
Wright CD, Hill EW (1995) Reciprocity in magnetic force microscopy. Appl Phys Lett 67(3):433–435
CrossRef
96.
Hubert A, Rave W, Tomlinson SL (1997) Imaging magnetic charges with magnetic force microscopy. Phys Status Solidi B Basic Res 204:817–828
CrossRef
97.
Hug HJ, Stiefel B, Van Schendel PJA, Moser A, Hofer R, Martin S, OHandley RC et al (1998) Quantitative magnetic force microscopy on perpendicularly magnetized samples. J Appl Phys 83(11):5609–5620
CrossRef
98.
Häberle T, Haering F, Pfeifer H, Han L, Kuerbanjiang B, Wiedwald U, Koslowski B et al (2012) Towards quantitative magnetic force microscopy: theory and experiment. New J Phys 14(4):043044
CrossRef
99.
Babcock KL, Elings VB, Shi J, Awschalom DD, Dugas M (1996) Field‐dependence of microscopic probes in magnetic force microscopy. Appl Phys Lett 69(5):705–707
CrossRef
100.
Kong L, Chou SY (1997) Quantification of magnetic force microscopy using a micronscale current ring. Appl Phys Lett 70(15):2043–2045
CrossRef
101.
Goddenhenrich T, Lemke H, Muck M, Hartmann U, Heiden C (1990) Probe calibration in magnetic force microscopy. Appl Phys Lett 57(24):2612–2614
CrossRef
102.
Lohau J, Kirsch S, Carl A, Dumpich G, Wassermann EF (1999) Quantitative determination of effective dipole and monopole moments of magnetic force microscopy tips. J Appl Phys 86(6):3410–3417
CrossRef
103.
Van Schendel PJA, Hug HJ, Stiefel B, Martin S, Guntherodt HJ (2000) A method for the calibration of magnetic force microscopy tips. J Appl Phys 88(1):435–445
CrossRef
104.
Kebe T, Carl A (2004) Calibration of magnetic force microscopy tips by using nanoscale current-carrying parallel wires. J Appl Phys 95(3):775–792
CrossRef
105.
Jaafar M, Asenjo A, Vazquez M (2008) Calibration of coercive and stray fields of commercial magnetic force microscope probes. Nanotechnol IEEE Trans 7(3):245–250
CrossRef
106.
Ruhrig M, Porthun S, Lodder JC, McVitie S, Heyderman LJ, Johnston AB, Chapman JN (1996) Electron beam fabrication and characterization of high‐resolution magnetic force microscopy tips. J Appl Phys 79(6):2913–2919
CrossRef
107.
Leinenbach P, Memmert U, Schelten J, Hartmann U (1999) Fabrication and characterization of advanced probes for magnetic force microscopy. Appl Surf Sci 144:492–496
CrossRef
108.
Arie T, Nishijima H, Akita S, Nakayama Y (2000) Carbon-nanotube probe equipped magnetic force microscope. J Vacuum Sci Technol B Microelectron Nanometer Struct 18(1):104–106
CrossRef
109.
Ono T, Esashi M (2003) Magnetic force and optical force sensing with ultrathin silicon resonator. Rev Sci Instrum 74(12):5141–5146
CrossRef
110.
Gao L, Yue LP, Yokota T, Skomski R, Liou SH, Takahoshi H, Ishio S et al (2004) Focused ion beam milled CoPt magnetic force microscopy tips for high resolution domain images. Magn IEEE Trans 40(4):2194–2196
CrossRef
111.
Kuramochi H, Uzumaki T, Yasutake M, Tanaka A, Akinaga H, Yokoyama H (2005) A magnetic force microscope using CoFe-coated carbon nanotube probes. Nanotechnology 16(1):24
CrossRef
112.
Wolny F, Weissker U, Muhl T, Leonhardt A, Menzel S, Winkler A, Buchner B (2008) Iron-filled carbon nanotubes as probes for magnetic force microscopy. J Appl Phys 104(6):064908–064908
CrossRef
113.
Wolny F, Mühl T, Weissker U, Lipert K, Schumann J, Leonhardt A, Büchner B (2010) Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21(43):435501
CrossRef
114.
Foss S, Proksch R, Dahlberg ED, Moskowitz B, Walsh B (1996) Localized micromagnetic perturbation of domain walls in magnetite using a magnetic force microscope. Appl Phys Lett 69(22):3426–3428
CrossRef
115.
Pokhil TG, Moskowitz BM (1997) Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. J Geophys Res 102(B10):22681–22
CrossRef
116.
McVitie S, White GS, Scott J, Warin P, Chapman JN (2001) Quantitative imaging of magnetic domain walls in thin films using Lorentz and magnetic force microscopies. J Appl Phys 90(10):5220–5227
CrossRef
117.
Asenjo A, García D, García JM, Prados C, Vázquez M (2000) Magnetic force microscopy study of dense stripe domains in Fe-B/Co-Si-B multilayers and the evolution under an external applied field. Phys Rev B 62(10):6538
CrossRef
118.
Donzelli O, Palmeri D, Musa L, Casoli F, Albertini F, Pareti L, Turilli G (2003) Perpendicular magnetic anisotropy and stripe domains in ultrathin Co/Au sputtered multilayers. J Appl Phys 93(12):9908–9912
CrossRef
119.
Ehresmann A, Krug I, Kronenberger A, Ehlers A, Engel D (2004) In-plane magnetic pattern separation in NiFe/NiO and Co/NiO exchange biased bilayers investigated by magnetic force microscopy. J Magn Magn Mater 280(2):369–376
CrossRef
120.
Gottwald M, Hehn M, Lacour D, Hauet T, Montaigne F, Mangin S, Berger A et al (2012) Asymmetric magnetization reversal in dipolarly coupled spin valve structures with perpendicular magnetic anisotropy. Phys Rev B 85(6):064403
CrossRef
121.
Gibson GA, Schultz S (1993) Magnetic force microscope study of the micromagnetics of submicrometer magnetic particles. J Appl Phys 73(9):4516–4521
CrossRef
122.
Kleiber M, Kümmerlen F, Löhndorf M, Wadas A, Weiss D, Wiesendanger R (1998) Magnetization switching of submicrometer Co dots induced by a magnetic force microscope tip. Phys Rev B 58(9):5563
CrossRef
123.
Lohau J, Carl A, Kirsch S, Wassermann EF (2001) Magnetization reversal and coercivity of a single-domain Co/Pt dot measured with a calibrated magnetic force microscope tip. Appl Phys Lett 78(14):2020–2022
CrossRef
124.
Raabe J, Pulwey R, Sattler R, Schweinbock T, Zweck J, Weiss D (2000) Magnetization pattern of ferromagnetic nanodisks. J Appl Phys 88(7):4437–4439
CrossRef
125.
Pulwey R et al (2001) Switching behavior of vortex structures in nanodisks. Magn IEEE Trans 37.4:2076–2078
CrossRef
126.
Garcıa JM, Thiaville A, Miltat J (2002) MFM imaging of nanowires and elongated patterned elements. J Magn Magn Mater 249(1):163–169
CrossRef
127.
Pulwey R, Zolfl M, Bayreuther G, Weiss D (2002) Magnetic domains in epitaxial nanomagnets with uniaxial or fourfold crystal anisotropy. J Appl Phys 91(10):7995–7997
CrossRef
128.
Rahm M, Schneider M, Biberger J, Pulwey R, Zweck J, Weiss D, Umansky V (2003) Vortex nucleation in submicrometer ferromagnetic disks. Appl Phys Lett 82(23):4110–4112
CrossRef
129.
Rahm M, Biberger J, Umansky V, Weiss D (2003) Vortex pinning at individual defects in magnetic nanodisks. J Appl Phys 93(10):7429–7431
CrossRef
130.
Garcia-Martin JM, Thiaville A, Miltat J, Okuno T, Vila L, Piraux L (2004) Imaging magnetic vortices by magnetic force microscopy: experiments and modelling. J Phys D Appl Phys 37(7):965
CrossRef
131.
Chang J, Mironov VL, Gribkov BA, Fraerman AA, Gusev SA, Vdovichev SN (2006) Magnetic state control of ferromagnetic nanodots by magnetic force microscopy probe. J Appl Phys 100(10):104304–104304
CrossRef
132.
Takagaki Y, Jenichen B, Herrmann C, Wiebicke E, Däweritz L, Ploog KH (2006) First-order phase transition in MnAs disks on GaAs (001). Phys Rev B 73(12):125324
CrossRef
133.
Jenichen B, Kaganer VM, Takagaki Y, Herrmann C, Ploog KH, Dudzik E, Feyerherm R (2007) First order phase transition in MnAs nanodisks. Phys Status Solidi (a) 204(8):2772–2777
CrossRef
134.
Hanson M, Bručas R, Kazakova O (2007) Effects of size and interactions on the magnetic behaviour of elliptical (001) Fe nanoparticles. J Magn Magnetic Mater 316(2):181–183
CrossRef
135.
Zhu X, Grutter P, Metlushko V, Hao Y, Castano FJ, Ross CA, Smith HI et al (2003) Construction of hysteresis loops of single domain elements and coupled permalloy ring arrays by magnetic force microscopy. J Appl Phys 93(10):8540–8542
CrossRef
136.
Roy PE, Lee JH, Trypiniotis T, Anderson D, Jones GAC, Tse D, Barnes CHW (2009) Antivortex domain walls observed in permalloy rings via magnetic force microscopy. Phys Rev B 79(6):060407
CrossRef
137.
Weissker U, Loffler M, Wolny F, Lutz MU, Scheerbaum N, Klingeler R, Buchner B et al (2009) Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy. J Appl Phys 106(5):054909–054909
CrossRef
138.
Mironov VL, Ermolaeva OL, Gusev SA, Klimov AY, Rogov VV, Gribkov BA, Petrashov VT et al (2010) Antivortex state in crosslike nanomagnets. Phys Rev B 81(9):094436
CrossRef
139.
Mironov VL, Ermolaeva OL, Skorohodov EV, Klimov AY (2012) Field-controlled domain wall pinning-depinning effects in a ferromagnetic nanowire-nanoislands system. Phys Rev B 85(14):144418
CrossRef
140.
Suzuki H, Tanaka T, Sasaki T, Nakamura N, Matsunaga T, Mashiko S (1998) High-resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn J Appl Phys 37:L1343–L1345
CrossRef
141.
Albrecht M, Janke V, Sievers S, Siegner U, Schüler D, Heyen U (2005) Scanning force microspy study of biogenic nanoparticles for medical applications. J Magn Magn Mater 290:269–271
CrossRef
142.
Krishna H, Miller C, Longstreth-Spoor L, Nussinov Z, Gangopadhyay AK, Kalyanaraman R (2008) Unusual size-dependent magnetization in near hemispherical Co nanomagnets on SiO2 from fast pulsed laser processing. J Appl Phys 103(7):073902–073902
CrossRef
143.
Schreiber S, Savla M, Pelekhov DV, Iscru DF, Selcu C, Hammel PC, Agarwal G (2008) Magnetic force microscopy of superparamagnetic nanoparticles. Small 4(2):270–278
CrossRef
144.
Moskalenko AV, Yarova PL, Gordeev SN, Smirnov SV (2010) Single protein molecule mapping with magnetic atomic force microscopy. Biophys J 98(3):478–487
CrossRef
145.
Block S, Glöckl G, Weitschies W, Helm CA (2011) Direct visualization and identification of biofunctionalized nanoparticles using a magnetic atomic force microscope. Nano Lett 11(9):3587–3592
CrossRef
146.
Dietz C, Herruzo ET, Lozano JR, Garcia R (2011) Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22(12):125708
CrossRef
147.
Sievers S, Braun KF, Eberbeck D, Gustafsson S, Olsson E, Schumacher HW, Siegner U (2012) Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by magnetic force microscopy. Small 8(17):2675–2679
CrossRef
148.
Yuan CW, Zheng Z, De Lozanne AL, Tortonese M, Rudman DA, Eckstein JN (1996) Vortex images in thin films of YBa 2 Cu 3 O 7-x and Bi 2 Sr 2 Ca 1 Cu 2 O 8+ x obtained by low‐temperature magnetic force microscopy. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(2):1210–1213
CrossRef
149.
Auslaender OM, Luan L, Straver EW, Hoffman JE, Koshnick NC, Zeldov E, Moler KA et al (2008) Mechanics of individual isolated vortices in a cuprate superconductor. Nat Phys 5(1):35–39
CrossRef
150.
Schwarz A, Liebmann M, Pi UH, Wiesendanger R (2010) Real space visualization of thermal fluctuations in a triangular flux-line lattice. New J Phys 12(3):033022
CrossRef
151.
Brown JWF (1962) Magnetostatic principles in ferromagnetism, vol 112. North-Holland Publ. Co, Amsterdam
152.
Wadas A, Guntherodt HJ (1990) The topography effect on magnetic images in magnetic force microscopy. J Appl Phys 68(9):4767–4771
CrossRef
153.
Giessibl FJ (2006) Higher-harmonic atomic force microscopy. Surf Interface Anal 38(12–13):1696–1701
CrossRef
154.
Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226
CrossRef
155.
Schneider M, Müller-Pfeiffer S, Zinn W (1996) Magnetic force microscopy of domain wall fine structures in iron films. J Appl Phys 79(11):8578–8583
CrossRef
156.
Fannin PC, Scaife BKP, Charles SW (1993) Relaxation and resonance in ferrofluids. J Magn Magn Mater 122(1):159–163
CrossRef
157.
Kötitz R, Fannin PC, Trahms L (1995) Time domain study of Brownian and Néel relaxation in ferrofluids. J Magn Magn Mater 149(1):42–46
CrossRef
158.
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742
CrossRef
159.
Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Cheon J et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733
CrossRef
160.
Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Cheon J et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391
CrossRef
161.
Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Hyeon T et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441
CrossRef
162.
Hoffmann B, Houbertz R, Hartmann U (1998) Eddy current microscopy. Appl Phys A Mater Sci Process 66:S409–S413
CrossRef
163.
Sidles JA, Garbini JL, Bruland KJ, Rugar D, Züger O, Hoen S, Yannoni CS (1995) Magnetic resonance force microscopy. Rev Mod Phys 67(1):249
CrossRef
164.
Hammel PC, Pelekhov DV, Wigen PE, Gosnell TR, Midzor MM, Roukes ML (2003) The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging. Proc IEEE 91(5):789–798
CrossRef
165.
Suter A (2004) The magnetic resonance force microscope. Prog Nucl Magn Reson Spectrosc 45(3):239–274
CrossRef
166.
Borgonovi F, Gorshkov VN, Tsifrinovich VII (2006) Magnetic resonance force microscopy and a single-spin measurement. World Scientific, Hackensack
167.
Wigen PE, Roukes ML, Hammel PC (2006) Ferromagnetic resonance force microscopy. In: Spin dynamics in confined magnetic structures III. Springer, Berlin/Heidelberg, pp 105–136
CrossRef
168.
Hammel PC, Pelekhov DV (2007) The magnetic force microscope. In: Kronmuller H, Parkin S (eds) Handbook of magnetism and advanced magnetic materials, vol 5, Spintronics and magnetoelectronics. Wiley, Chichester
169.
Kuehn S, Hickman SA, Marohn JA (2008) Advances in mechanical detection of magnetic resonance. J Chem Phys 128:052208
CrossRef
170.
Zhang Z, Roukes ML, Hammel PC (1996) Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy. J Appl Phys 80(12):6931–6938
CrossRef
171.
Dougherty WM, Bruland KJ, Chao SH, Garbini JL, Jensen SE, Sidles JA (2000) The Bloch equations in high-gradient magnetic resonance force microscopy: theory and experiment. J Magn Reson 143(1):106–119
CrossRef
172.
Suter A, Pelekhov DV, Roukes ML, Hammel PC (2002) Probe–sample coupling in the magnetic resonance force microscope. J Magn Reson 154(2):210–227
CrossRef
173.
Charbois V, Naletov VV, Youssef JB, Klein O (2002) Influence of the magnetic tip in ferromagnetic resonance force microscopy. Appl Phys Lett 80(25):4795–4797
CrossRef
174.
Mozyrsky D, Martin I, Pelekhov D, Hammel PC (2003) Theory of spin relaxation in magnetic resonance force microscopy. Appl Phys Lett 82(8):1278–1280
CrossRef
175.
Wago K, Zuger O, Kendrick R, Yannoni CS, Rugar D (1996) Low-temperature magnetic resonance force detection. J Vacuum Sci Technol B Microelectron Nanometer Struct 14(2):1197–1201
CrossRef
176.
Garbini JL, Bruland KJ, Dougherty WM, Sidles JA (1996) Optimal control of force microscope cantilevers. I. Controller design. J Appl Phys 80(4):1951–1958
CrossRef
177.
Bruland KJ, Garbini JL, Dougherty WM, Sidles JA (1996) Optimal control of force microscope cantilevers. II. Magnetic coupling implementation. J Appl Phys 80(4):1959–1964
CrossRef
178.
Zhang Z, Hammel PC, Moore GJ (1996) Application of a novel rf coil design to the magnetic resonance force microscope. Rev Sci Instrum 67(9):3307–3309
CrossRef
179.
Dougherty WM, Bruland KJ, Garbini JL, Sidles JA (1996) Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator. Meas Sci Technol 7(12):1733
CrossRef
180.
Zhang Z, Hammel PC (1998) Magnetic resonance force microscopy with a ferromagnetic tip mounted on the force detector. Solid State Nucl Magn Reson 11(1):65–72
CrossRef
181.
Nazaretski E, Graham KS, Thompson JD, Wright JA, Pelekhov DV, Hammel PC, Movshovich R (2009) Design of a variable temperature scanning force microscope. Rev Sci Instrum 80(8):083704–083704
CrossRef
182.
Streckeisen P, Rast S, Wattinger C, Meyer E, Vettiger P, Gerber C, Güntherodt HJ (1998) Instrumental aspects of magnetic resonance force microscopy. Appl Phys A Mater Sci Process 66:S341–S344
CrossRef
183.
Rugar D, Stipe BC, Mamin HJ, Yannoni CS, Stowe TD, Yasumura KY, Kenny TW (2001) Adventures in attonewton force detection. Appl Phys A 72(1):S3–S10
CrossRef
184.
Jenkins NE, DeFlores LP, Allen J, Ng TN, Garner SR, Kuehn S, Marohn JA et al (2004) Batch fabrication and characterization of ultrasensitive cantilevers with submicron magnetic tips. J Vacuum Sci Technol B Microelectron Nanometer Struct 22(3):909–915
CrossRef
185.
Barbic M, Scherer A (2005) Composite nanowire-based probes for magnetic resonance force microscopy. Nano Lett 5(1):187–190
CrossRef
186.
Mamin HJ, Rettner CT, Sherwood MH, Gao L, Rugar D (2012) High field-gradient dysprosium tips for magnetic resonance force microscopy. Appl Phys Lett 100(1):013102–013102
CrossRef
187.
Longenecker JG, Mamin HJ, Senko AW, Chen L, Rettner CT, Rugar D, Marohn JA (2012) High-gradient nanomagnets on cantilevers for sensitive detection of nuclear magnetic resonance. ACS Nano 6(11):9637–9645
CrossRef
188.
Rugar D, Yannoni CS, Sidles JA (1992) Mechanical detection of magnetic resonance. Nature 360(6404):563–566
CrossRef
189.
Wago K, Zuger O, Wegener J, Kendrick R, Yannoni CS, Rugar D (1997) Magnetic resonance force detection and spectroscopy of electron spins in phosphorus-doped silicon. Rev Sci Instrum 68(4):1823–1826, ESR-Spectr mit Hyperfeinsplitting
CrossRef
190.
Wago K, Botkin D, Yannoni CS, Rugar D (1998) Force-detected electron-spin resonance: adiabatic inversion, nutation, and spin echo. Phys Rev B 57(2):1108
CrossRef
191.
Züger O, Rugar D (1993) First images from a magnetic resonance force microscope. Appl Phys Lett 63(18):2496–2498
CrossRef
192.
Züger O, Rugar D (1994) Magnetic resonance detection and imaging using force microscope techniques. J Appl Phys 75(10):6211–6216
CrossRef
193.
Hammel PC, Zhang Z, Moore GJ, Roukes ML (1995) Sub-surface imaging with the magnetic resonance force microscope. J Low Temp Phys 101(1–2):59–69
CrossRef
194.
Rugar D, Budakian R, Mamin HJ, Chui BW (2004) Single spin detection by magnetic resonance force microscopy. Nature 430(6997):329–332
CrossRef
195.
Rugar D, Züger O, Hoen S, Yannoni CS, Vieth HM, Kendrick RD (1994) Force detection of nuclear magnetic resonance. Science 264(5165):1560–1563
CrossRef
196.
Züger O, Hoen ST, Yannoni CS, Rugar D (1996) Three-dimensional imaging with a nuclear magnetic resonance force microscope. J Appl Phys 79(4):1881–1884
CrossRef
197.
Mamin HJ, Poggio M, Degen CL, Rugar D (2007) Nuclear magnetic resonance imaging with 90-nm resolution. Nat Nanotechnol 2(5):301–306
CrossRef
198.
Eberhardt KW, Degen CL, Hunkeler A, Meier BH (2008) One- and Two-Dimensional NMR spectroscopy with a magnetic-resonance force microscope. Angew Chem Int Ed 47(46):8961–8963
CrossRef
199.
Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D (2009) Nanoscale magnetic resonance imaging. Proc Natl Acad Sci 106(5):1313–1317
CrossRef
200.
Mamin HJ, Oosterkamp TH, Poggio M, Degen CL, Rettner CT, Rugar D (2009) Isotope-selective detection and imaging of organic nanolayers. Nano Lett 9(8):3020–3024
CrossRef
201.
Joss R, Tomka IT, Eberhardt KW, van Beek JD, Meier BH (2011) Chemical-shift imaging in micro-and nano-MRI. Phys Rev B 84(10):104435
CrossRef
202.
Zhang Z, Hammel PC, Wigen PE (1996) Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl Phys Lett 68(14):2005–2007
CrossRef
203.
Zhang Z, Hammel PC, Midzor M, Roukes ML, Childress JR (1998) Ferromagnetic resonance force microscopy on microscopic cobalt single layer films. Appl Phys Lett 73(14):2036–2038
CrossRef
204.
Wago K, Botkin D, Yannoni CS, Rugar D (1998) Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope. Appl Phys Lett 72(21):2757–2759
CrossRef
205.
Mewes T, Kim J, Pelekhov DV, Kakazei GN, Wigen PE, Batra S, Hammel PC (2006) Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots. Phys Rev B 74(14):144424
CrossRef
206.
Urban R, Putilin A, Wigen PE, Liou SH, Cross MC, Hammel PC, Roukes ML (2006) Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy. Phys Rev B 73(21):212410
CrossRef
207.
Lee I, Obukhov Y, Xiang G, Hauser A, Yang F, Banerjee P, Hammel PC et al (2010) Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature 466(7308):845–848
CrossRef
208.
Lee I, Obukhov Y, Hauser AJ, Yang FY, Pelekhov DV, Hammel PC (2011) Nanoscale confined mode ferromagnetic resonance imaging of an individual Ni81Fe19 disk using magnetic resonance force microscopy. J Appl Phys 109(7):07D313–07D313
CrossRef
209.
Pigeau B, Hahn C, De Loubens G, Naletov VV, Klein O, Mitsuzuka K, Montaigne F et al (2012) Measurement of the dynamical dipolar coupling in a pair of magnetic nanodisks using a ferromagnetic resonance force microscope. Phys Rev Lett 109(24):247602
CrossRef
210.
Mamin HJ, Budakian R, Chui BW, Rugar D (2003) Detection and manipulation of statistical polarization in small spin ensembles. Phys Rev Lett 91(20):207604
CrossRef
211.
Budakian R, Mamin HJ, Chui BW, Rugar D (2005) Creating order from random fluctuations in small spin ensembles. Science 307(5708):408–411
CrossRef
212.
Mamin HJ, Budakian R, Chui BW, Rugar D (2005) Magnetic resonance force microscopy of nuclear spins: detection and manipulation of statistical polarization. Phys Rev B 72(2):024413
CrossRef
213.
Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York 1999
214.
Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719
CrossRef
215.
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89(12):5675–5679
CrossRef
216.
Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging, vol 1. Sinauer Associates, Sunderland
217.
Ciobanu L, Seeber DA, Pennington CH (2002) 3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm. J Magn Reson 158(1):178–182
CrossRef
218.
Weiger M, Schmidig D, Denoth S, Massin C, Vincent F, Schenkel M, Fey M (2008) NMR microscopy with isotropic resolution of 3.0 μm using dedicated hardware and optimized methods. Conc Magn Reson Part B Magn Reson Eng 33(2):84–93
CrossRef
219.
Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2000) Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy. Phys Rev B 61(21):14694–14699
CrossRef
220.
Berman GP, Doolen GD, Hammel PC, Tsifrinovich VI (2001) Magnetic resonance force microscopy quantum computer with tellurium donors in silicon. Phys Rev Lett 86(13):2894–2896
CrossRef
221.
Cerletti V, Coish WA, Gywat O, Loss D (2005) Recipes for spin-based quantum computing. Nanotechnology 16(4):R27
CrossRef
222.
Bruland KJ, Dougherty WM, Garbini JL, Sidles JA, Chao SH (1998) Force-detected magnetic resonance in a field gradient of 250 000 Tesla per meter. Appl Phys Lett 73(21):3159–3161
CrossRef
223.
Mamin HJ, Budakian R, Rugar D (2003) Superconducting microwave resonator for millikelvin magnetic resonance force microscopy. Rev Sci Instrum 74(5):2749–2753
CrossRef
224.
Poggio M, Degen CL, Rettner CT, Mamin HJ, Rugar D (2007) Nuclear magnetic resonance force microscopy with a microwire rf source. Appl Phys Lett 90(26):263111–263111
CrossRef
225.
Ascoli C, Baschieri P, Frediani C, Lenci L, Martinelli M, Alzetta G, Pardi L et al (1996) Micromechanical detection of magnetic resonance by angular momentum absorption. Appl Phys Lett 69(25):3920–3922
CrossRef
226.
Löhndorf M, Moreland J, Kabos P (2000) Ferromagnetic resonance detection with a torsion-mode atomic-force microscope. Appl Phys Lett 76(9):1176–1178
CrossRef
227.
Wilson KG (1975) Renormalization group methods. Adv Math 16(2):170–186
CrossRef
228.
Wilson KG (1975) The renormalization group: critical phenomena and the Kondo problem. Rev Mod Phys 47(4):773
CrossRef
229.
Wiesendanger R (2009) Spin mapping at the nanoscale and atomic scale. Rev Mod Phys 81(4):1495
CrossRef
230.
Kaiser U, Schwarz A, Wiesendanger R (2008) Evaluating local properties of magnetic tips utilizing an antiferromagnetic surface. Phys Rev B 78(10):104418
CrossRef
231.
Lazo C, Caciuc V, Hölscher H, Heinze S (2008) Role of tip size, orientation, and structural relaxations in first-principles studies of magnetic exchange force microscopy and spin-polarized scanning tunneling microscopy. Phys Rev B 78(21):214416
CrossRef
232.
Lazo C, Heinze S (2011) First-principles study of magnetic exchange force microscopy with ferromagnetic and antiferromagnetic tips. Phys Rev B 84(14):144428
CrossRef
233.
Schwarz A, Kaiser U, Wiesendanger R (2009) Towards an understanding of the atomic scale magnetic contrast formation in NC-AFM: a tip material dependent MExFM study on NiO (001). Nanotechnology 20(26):264017
CrossRef
234.
Vedmedenko EY, Zhu Q, Kaiser U, Schwarz A, Wiesendanger R (2012) Atomic-scale magnetic dissipation from spin-dependent adhesion hysteresis. Phys Rev B 85(17):174410
CrossRef
235.
Pielmeier F, Giessibl FJ (2013) Spin resolution and evidence for superexchange on NiO (001) observed by force microscopy. Phys Rev Lett 110(26):266101
CrossRef
236.
Schmidt R, Lazo C, Holscher H, Pi UH, Caciuc V, Schwarz A, Wiesendanger R, Heinze S (2008) Probing the magnetic exchange forces of iron on the atomic scale. Nano Lett 9(1):200–204
CrossRef
237.
Schmidt R, Lazo C, Kaiser U, Schwarz A, Heinze S, Wiesendanger R (2011) Quantitative measurement of the magnetic exchange interaction across a vacuum gap. Phys Rev Lett 106(25):257202
CrossRef
238.
Schmidt R, Schwarz A, Wiesendanger R (2012) Magnetization switching utilizing the magnetic exchange interaction. Phys Rev B 86(17):174402
CrossRef
239.
Ness H, Gautier F (1995) Theoretical study of the interaction between a magnetic nanotip and a magnetic surface. Phys Rev B 52(10):7352
CrossRef
240.
Nakamura K, Hasegawa H, Oguchi T, Sueoka K, Hayakawa K, Mukasa K (1997) First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films. Phys Rev B 56(6):3218
CrossRef
241.
Foster AS, Shluger AL (2001) Spin-contrast in non-contact SFM on oxide surfaces: theoretical modelling of NiO (001) surface. Surf Sci 490(1):211–219
CrossRef
242.
Hölscher H, Langkat SM, Schwarz A, Wiesendanger R (2002) Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl Phys Lett 81:4428–4430
CrossRef
243.
Hoffmann R, Lantz MA, Hug HJ, Van Schendel PJA, Kappenberger P, Martin S, Baratoff A, Güntherodt HJ (2003) Atomic resolution imaging and frequency versus distance measurements on NiO (001) using low-temperature scanning force microscopy. Phys Rev B 67(8):085402
CrossRef
244.
Langkat SM, Hölscher H, Schwarz A, Wiesendanger R (2003) Determination of site specific interatomic forces between an iron coated tip and the NiO (001) surface by force field spectroscopy. Surf Sci 527(1):12–20
CrossRef
245.
Schwabl F (2005) Advanced quantum mechanics. Springer, Berlin/Heidelberg
246.
Wieser R, Caciuc V, Lazo C, Hölscher H, Vedmedenko EY, Wiesendanger R (2013) A theoretical study of the dynamical switching of a single spin by exchange forces. New J Phys 15(1):013011
CrossRef
- Titel
- Imaging and Characterization of Magnetic Micro- and Nanostructures Using Force Microscopy
- DOI
- https://doi.org/10.1007/978-3-662-44551-8_13
- Autor:
-
Stephan Block
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 13
- Kapitelnummer
- 13