Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Immersed Boundary Projection Methods

verfasst von : Benedikt Dorschner, Tim Colonius

Erschienen in: Immersed Boundary Method

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Immersed boundary methods are an attractive alternative to body-fitted grids for complex geometries and fluid–structure interaction problems. The simplicity of the underlying Cartesian mesh allows for a number of useful conservation and stability properties to be embedded in the numerics, and for the resulting discrete equations to be solved efficiently and scalably. We review the immersed boundary projection method for incompressible flows, which implicitly satisfies the no-slip condition at immersed surfaces by solving a system of algebraic equations for surface traction. We discuss issues related to the smoothness of the surface stresses and solution strategies for strongly coupled fluid–structure interaction. For three-dimensional flows on unbounded domains, we discuss a fast lattice Green’s function method that provides for an adaptive domain comprising the vortical flow region and at the same time can be solved efficiently using extensions of the fast multipole method. To illustrate the methods, we present a series of benchmark simulations in two and three dimensions, ranging from inverted flag flutter, flow past spinning and inclined disks, and turbulent flow past a sphere.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Typically, the first-order errors that are associated with the regularization of the delta functions are limited to a finite region near the surface, and this results in better than first-order accuracy in the \(L_2\) norm.
 
Literatur
Zurück zum Zitat Ahn HT, Kallinderis Y (2006) Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys 219(2):671–696MathSciNetMATHCrossRef Ahn HT, Kallinderis Y (2006) Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys 219(2):671–696MathSciNetMATHCrossRef
Zurück zum Zitat Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, NJMATH Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, NJMATH
Zurück zum Zitat Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64–84MATHCrossRef Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64–84MATHCrossRef
Zurück zum Zitat Berger MJ, Oliger J (1984) Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 53(3):484–512MathSciNetMATHCrossRef Berger MJ, Oliger J (1984) Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 53(3):484–512MathSciNetMATHCrossRef
Zurück zum Zitat Beyer RP, LeVeque RJ (1992) Analysis of a one-dimensional model for the immersed boundary method. SIAM J Numer Anal 29(2):332–364MathSciNetMATHCrossRef Beyer RP, LeVeque RJ (1992) Analysis of a one-dimensional model for the immersed boundary method. SIAM J Numer Anal 29(2):332–364MathSciNetMATHCrossRef
Zurück zum Zitat Brasey V, Hairer E (1993) Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2. SIAM J Numer Anal 30(2):538–552MathSciNetMATHCrossRef Brasey V, Hairer E (1993) Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2. SIAM J Numer Anal 30(2):538–552MathSciNetMATHCrossRef
Zurück zum Zitat Catchirayer M, Boussuge JF, Sagaut P, Montagnac M, Papadogiannis D, Garnaud X (2018) Extended integral wall-model for large-eddy simulations of compressible wall-bounded turbulent flows. Phys Fluids 30(6):065106CrossRef Catchirayer M, Boussuge JF, Sagaut P, Montagnac M, Papadogiannis D, Garnaud X (2018) Extended integral wall-model for large-eddy simulations of compressible wall-bounded turbulent flows. Phys Fluids 30(6):065106CrossRef
Zurück zum Zitat Chang W, Giraldo F, Perot B (2002) Analysis of an exact fractional step method. J Comput Phys 180(1):183–199MATHCrossRef Chang W, Giraldo F, Perot B (2002) Analysis of an exact fractional step method. J Comput Phys 180(1):183–199MATHCrossRef
Zurück zum Zitat Chrust M, Dauteuille C, Bobinski T, Rokicki J, Goujon-Durand S, Wesfreid J, Bouchet G, Dušek J (2015) Effect of inclination on the transition scenario in the wake of fixed disks and flat cylinders. J Fluid Mech 770:189–209CrossRef Chrust M, Dauteuille C, Bobinski T, Rokicki J, Goujon-Durand S, Wesfreid J, Bouchet G, Dušek J (2015) Effect of inclination on the transition scenario in the wake of fixed disks and flat cylinders. J Fluid Mech 770:189–209CrossRef
Zurück zum Zitat Colella P, Graves DT, Keen BJ, Modiano D (2006) A Cartesian grid embedded boundary method for hyperbolic conservation laws. J Comput Phys 211(1):347–366MathSciNetMATHCrossRef Colella P, Graves DT, Keen BJ, Modiano D (2006) A Cartesian grid embedded boundary method for hyperbolic conservation laws. J Comput Phys 211(1):347–366MathSciNetMATHCrossRef
Zurück zum Zitat De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley
Zurück zum Zitat Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12):793–801 Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12):793–801
Zurück zum Zitat Dorschner B, Frapolli N, Chikatamarla SS, Karlin IV (2016) Grid refinement for entropic lattice Boltzmann models. Phys Rev E 94(5):053311MathSciNetCrossRef Dorschner B, Frapolli N, Chikatamarla SS, Karlin IV (2016) Grid refinement for entropic lattice Boltzmann models. Phys Rev E 94(5):053311MathSciNetCrossRef
Zurück zum Zitat Dorschner B, Yu K, Mengaldo G, Colonius T (2020) A fast multi-resolution lattice green’s function method for elliptic difference equations. J Comput Phys 109270 Dorschner B, Yu K, Mengaldo G, Colonius T (2020) A fast multi-resolution lattice green’s function method for elliptic difference equations. J Comput Phys 109270
Zurück zum Zitat Dreher J, Grauer R (2005) Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws. Parallel Comput 31(8–9):913–932MathSciNetCrossRef Dreher J, Grauer R (2005) Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws. Parallel Comput 31(8–9):913–932MathSciNetCrossRef
Zurück zum Zitat Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M, Löffler F et al (2014) A survey of high level frameworks in block-structured adaptive mesh refinement packages. J Parallel Distrib Comput 74(12):3217–3227CrossRef Dubey A, Almgren A, Bell J, Berzins M, Brandt S, Bryan G, Colella P, Graves D, Lijewski M, Löffler F et al (2014) A survey of high level frameworks in block-structured adaptive mesh refinement packages. J Parallel Distrib Comput 74(12):3217–3227CrossRef
Zurück zum Zitat Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60 Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J  Comput Phys 161(1):35–60
Zurück zum Zitat Ghaddar N, Korczak K, Mikic B, Patera A (1986) Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations. J Fluid Mech 163:99–127MathSciNetCrossRef Ghaddar N, Korczak K, Mikic B, Patera A (1986) Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations. J Fluid Mech 163:99–127MathSciNetCrossRef
Zurück zum Zitat Glowinski R, Pan TW, Periaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Eng 151(1–2):181–194 Glowinski R, Pan TW, Periaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Eng 151(1–2):181–194
Zurück zum Zitat Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef
Zurück zum Zitat Goza A, Colonius T (2017) A strongly-coupled immersed-boundary formulation for thin elastic structures. J Comput Phys 336:401–411MathSciNetMATHCrossRef Goza A, Colonius T (2017) A strongly-coupled immersed-boundary formulation for thin elastic structures. J Comput Phys 336:401–411MathSciNetMATHCrossRef
Zurück zum Zitat Goza A, Liska S, Morley B, Colonius T (2016) Accurate computation of surface stresses and forces with immersed boundary methods. J Comput Phys 321:860–873MathSciNetMATHCrossRef Goza A, Liska S, Morley B, Colonius T (2016) Accurate computation of surface stresses and forces with immersed boundary methods. J Comput Phys 321:860–873MathSciNetMATHCrossRef
Zurück zum Zitat Goza A, Colonius T, Sader JE (2018) Global modes and nonlinear analysis of inverted-flag flapping. J Fluid Mech 857:312–344MathSciNetMATHCrossRef Goza A, Colonius T, Sader JE (2018) Global modes and nonlinear analysis of inverted-flag flapping. J Fluid Mech 857:312–344MathSciNetMATHCrossRef
Zurück zum Zitat Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the ibm-Peskin.pdf. J Comput Phys 223(1):10–49 Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the ibm-Peskin.pdf. J Comput Phys 223(1):10–49
Zurück zum Zitat Gurugubelli P, Jaiman R (2015) Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J Fluid Mech 781:657–694MathSciNetMATHCrossRef Gurugubelli P, Jaiman R (2015) Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J Fluid Mech 781:657–694MathSciNetMATHCrossRef
Zurück zum Zitat Hairer E, Lubich C, Roche M (2006) The numerical solution of differential-algebraic systems by Runge-Kutta methods, vol 1409. Springer, BerlinMATH Hairer E, Lubich C, Roche M (2006) The numerical solution of differential-algebraic systems by Runge-Kutta methods, vol 1409. Springer, BerlinMATH
Zurück zum Zitat Hall CA (1985) Numerical solution of Navier-Stokes problems by the dual variable method. SIAM J Algebraic Discrete Methods 6(2):220–236 Hall CA (1985) Numerical solution of Navier-Stokes problems by the dual variable method. SIAM J Algebraic Discrete Methods 6(2):220–236
Zurück zum Zitat Hansen PC (1998) Rank-deficient and discrete illposed problems: numerical aspects of linear inversion, vol 4. SIAM Hansen PC (1998) Rank-deficient and discrete illposed problems: numerical aspects of linear inversion, vol 4. SIAM
Zurück zum Zitat Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253 Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253
Zurück zum Zitat Hou G, Wang J, Layton A (2012) Numerical methods for fluidstructure interaction—a review. Commun Comput Phys 12(2):337–377 Hou G, Wang J, Layton A (2012) Numerical methods for fluidstructure interaction—a review. Commun Comput Phys 12(2):337–377
Zurück zum Zitat Hu XY, Khoo B, Adams NA, Huang F (2006) A conservative interface method for compressible flows. J Comput Phys 219(2):553–578MathSciNetMATHCrossRef Hu XY, Khoo B, Adams NA, Huang F (2006) A conservative interface method for compressible flows. J Comput Phys 219(2):553–578MathSciNetMATHCrossRef
Zurück zum Zitat Huang WX, Sung HJ (2009) An immersed boundary method for fluid-flexible structure interaction. Comput Methods Appl Mech Eng 198(33):2650–2661MATHCrossRef Huang WX, Sung HJ (2009) An immersed boundary method for fluid-flexible structure interaction. Comput Methods Appl Mech Eng 198(33):2650–2661MATHCrossRef
Zurück zum Zitat Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331–347CrossRef Iaccarino G, Verzicco R (2003) Immersed boundary technique for turbulent flow simulations. Appl Mech Rev 56(3):331–347CrossRef
Zurück zum Zitat Kallemov B, Bhalla A, Griffith B, Donev A (2016) An immersed boundary method for rigid bodies. Commun Appl Math Comput Sci 11(1):79–141MathSciNetMATHCrossRef Kallemov B, Bhalla A, Griffith B, Donev A (2016) An immersed boundary method for rigid bodies. Commun Appl Math Comput Sci 11(1):79–141MathSciNetMATHCrossRef
Zurück zum Zitat Kim H, Durbin P (1988) Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys Fluids 31(11):3260–3265CrossRef Kim H, Durbin P (1988) Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys Fluids 31(11):3260–3265CrossRef
Zurück zum Zitat Kim D, Cossé J, Cerdeira CH, Gharib M (2013) Flapping dynamics of an inverted flag. J Fluid Mech 736 Kim D, Cossé J, Cerdeira CH, Gharib M (2013) Flapping dynamics of an inverted flag. J Fluid Mech 736
Zurück zum Zitat Kirkpatrick M, Armfield S, Kent J (2003) A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid. J Comput Phys 184(1):1–36 Kirkpatrick M, Armfield S, Kent J (2003) A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid. J Comput Phys 184(1):1–36
Zurück zum Zitat Kress R (2014) Linear integral equations, 3rd edn, vol 82. Springer, Berlin Kress R (2014) Linear integral equations, 3rd edn, vol 82. Springer, Berlin
Zurück zum Zitat Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719MathSciNetMATHCrossRef Lai MC, Peskin CS (2000) An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J Comput Phys 160(2):705–719MathSciNetMATHCrossRef
Zurück zum Zitat Lilly DK (1965) On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon Weather Rev 93(1):11–26CrossRef Lilly DK (1965) On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems. Mon Weather Rev 93(1):11–26CrossRef
Zurück zum Zitat Liska S, Colonius T (2016) A fast lattice Green’s function method for solving viscous incompressible flows on unbounded domains. J Comput Phys 316:360–384MathSciNetMATHCrossRef Liska S, Colonius T (2016) A fast lattice Green’s function method for solving viscous incompressible flows on unbounded domains. J Comput Phys 316:360–384MathSciNetMATHCrossRef
Zurück zum Zitat Liska S, Colonius T (2017) A fast immersed boundary method for external incompressible viscous flows using lattice Green’s functions. J Comput Phys 331:257–279MathSciNetMATHCrossRef Liska S, Colonius T (2017) A fast immersed boundary method for external incompressible viscous flows using lattice Green’s functions. J Comput Phys 331:257–279MathSciNetMATHCrossRef
Zurück zum Zitat Lorenz RD (2007) Spinning flight: dynamics of frisbees, boomerangs, samaras, and skipping stones. Springer Science & Business Media Lorenz RD (2007) Spinning flight: dynamics of frisbees, boomerangs, samaras, and skipping stones. Springer Science & Business Media
Zurück zum Zitat Mengaldo G, Liska S, Colonius KYT, Jardin T (2017) Immersed boundary lattice Green function methods for external aerodynamics. In: 23rd AIAA computational fluid dynamics conference, p 3621 Mengaldo G, Liska S, Colonius KYT, Jardin T (2017) Immersed boundary lattice Green function methods for external aerodynamics. In: 23rd AIAA computational fluid dynamics conference, p 3621
Zurück zum Zitat Mohd-Yusof J (1997) For simulations of flow in complex geometries. Ann Res Briefs 317–327 Mohd-Yusof J (1997) For simulations of flow in complex geometries. Ann Res Briefs 317–327
Zurück zum Zitat Mori Y, Peskin CS (2008) Implicit second-order immersed boundary methods with boundary mass. Comput Methods Appl Mech Eng 197(25–28):2049–2067MathSciNetMATHCrossRef Mori Y, Peskin CS (2008) Implicit second-order immersed boundary methods with boundary mass. Comput Methods Appl Mech Eng 197(25–28):2049–2067MathSciNetMATHCrossRef
Zurück zum Zitat Morinishi Y, Lund TS, Vasilyev OV, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. J Comput Phys 143(1):90–124MathSciNetMATHCrossRef Morinishi Y, Lund TS, Vasilyev OV, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. J Comput Phys 143(1):90–124MathSciNetMATHCrossRef
Zurück zum Zitat Nakata T, Liu H (2012) A fluid-structure interaction model of insect flight with flexible wings. J Comput Phys 231(4):1822–1847MathSciNetMATHCrossRef Nakata T, Liu H (2012) A fluid-structure interaction model of insect flight with flexible wings. J Comput Phys 231(4):1822–1847MathSciNetMATHCrossRef
Zurück zum Zitat Nissen A, Kreiss G, Gerritsen M (2013) High order stable finite difference methods for the Schrodinger equation. J Sci Comput 55(1):173–199 Nissen A, Kreiss G, Gerritsen M (2013) High order stable finite difference methods for the Schrodinger equation. J Sci Comput 55(1):173–199
Zurück zum Zitat Pereira J, Sousa J (1993) Finite volume calculations of self-sustained oscillations in a grooved channel. J Comput Phys 106(1):19–29MATHCrossRef Pereira J, Sousa J (1993) Finite volume calculations of self-sustained oscillations in a grooved channel. J Comput Phys 106(1):19–29MATHCrossRef
Zurück zum Zitat Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems - part II: Energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24–25):3147–3170MATHCrossRef Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems - part II: Energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24–25):3147–3170MATHCrossRef
Zurück zum Zitat Potts J, Crowther W (2001) Flight control of a spin stabilised axisymmetric disc-wing. In 39th aerospace sciences meeting and exhibit, p 253 Potts J, Crowther W (2001) Flight control of a spin stabilised axisymmetric disc-wing. In 39th aerospace sciences meeting and exhibit, p 253
Zurück zum Zitat Potts J, Crowther W (2002) Frisbee (TM) aerodynamics. In 20th AIAA applied aerodynamics conference, p 3150 Potts J, Crowther W (2002) Frisbee (TM) aerodynamics. In 20th AIAA applied aerodynamics conference, p 3150
Zurück zum Zitat Pradeep DS, Hussain F (2004) Effects of boundary condition in numerical simulations of vortex dynamics. J Fluid Mech 516:115–124MathSciNetMATHCrossRef Pradeep DS, Hussain F (2004) Effects of boundary condition in numerical simulations of vortex dynamics. J Fluid Mech 516:115–124MathSciNetMATHCrossRef
Zurück zum Zitat Rodriguez I, Borell R, Lehmkuhl O, Segarra CDP, Oliva A (2011) Direct numerical simulation of the flow over a sphere at Re\(=\) 3700. J Fluid Mech 679:263–287MATHCrossRef Rodriguez I, Borell R, Lehmkuhl O, Segarra CDP, Oliva A (2011) Direct numerical simulation of the flow over a sphere at Re\(=\) 3700. J Fluid Mech 679:263–287MATHCrossRef
Zurück zum Zitat Ryu J, Park SG, Kim B, Sung HJ (2015) Flapping dynamics of an inverted flag in a uniform flow. J Fluids Struct 57 Ryu J, Park SG, Kim B, Sung HJ (2015) Flapping dynamics of an inverted flag in a uniform flow. J Fluids Struct 57
Zurück zum Zitat Seidl V, Muzaferija S, Perić M (1997) Parallel DNS with local grid refinement. Appl Sci Res 59(4):379–394MATHCrossRef Seidl V, Muzaferija S, Perić M (1997) Parallel DNS with local grid refinement. Appl Sci Res 59(4):379–394MATHCrossRef
Zurück zum Zitat Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363MathSciNetMATHCrossRef Seo JH, Mittal R (2011) A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J Comput Phys 230(19):7347–7363MathSciNetMATHCrossRef
Zurück zum Zitat Stein DB, Guy RD, Thomases B (2017) Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains. J Comput Phys 335:155–178MathSciNetMATHCrossRef Stein DB, Guy RD, Thomases B (2017) Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains. J Comput Phys 335:155–178MathSciNetMATHCrossRef
Zurück zum Zitat Taneda S (1968) Waving motions of flags. J Phys Soc Jpn 24(2):392–401CrossRef Taneda S (1968) Waving motions of flags. J Phys Soc Jpn 24(2):392–401CrossRef
Zurück zum Zitat Tezduyar TE, Behr M, Mittal S, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial domain/space-time procedure. II. Computation of free surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371 Tezduyar TE, Behr M, Mittal S, Liou J (1992) New strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial domain/space-time procedure. II. Computation of free surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027MathSciNetMATHCrossRef Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027MathSciNetMATHCrossRef
Zurück zum Zitat Tian X, Xiao L, Zhang X, Yang J, Tao L, Yang D (2017) Flow around an oscillating circular disk at low to moderate Reynolds numbers. J Fluid Mech 812:1119–1145MathSciNetMATHCrossRef Tian X, Xiao L, Zhang X, Yang J, Tao L, Yang D (2017) Flow around an oscillating circular disk at low to moderate Reynolds numbers. J Fluid Mech 812:1119–1145MathSciNetMATHCrossRef
Zurück zum Zitat Tornberg AK, Engquist B (2004) Numerical approximations of singular source terms in differential equations. J Comput Phys 200(2):462–488MathSciNetMATHCrossRef Tornberg AK, Engquist B (2004) Numerical approximations of singular source terms in differential equations. J Comput Phys 200(2):462–488MathSciNetMATHCrossRef
Zurück zum Zitat Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetMATHCrossRef
Zurück zum Zitat Vanella M, Posa A, Balaras E (2014) Adaptive mesh refinement for immersed boundary methods. J Fluids Eng 136(4):040909CrossRef Vanella M, Posa A, Balaras E (2014) Adaptive mesh refinement for immersed boundary methods. J Fluids Eng 136(4):040909CrossRef
Zurück zum Zitat Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230(9):3479–3499MathSciNetMATHCrossRef Wang S, Zhang X (2011) An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows. J Comput Phys 230(9):3479–3499MathSciNetMATHCrossRef
Zurück zum Zitat Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40MathSciNetMATHCrossRef Yang J, Balaras E (2006) An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys 215(1):12–40MathSciNetMATHCrossRef
Zurück zum Zitat Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228(20):7821–7836MathSciNetMATHCrossRef Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228(20):7821–7836MathSciNetMATHCrossRef
Zurück zum Zitat Ye T, Mittal R, Udaykumar H, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetMATHCrossRef Ye T, Mittal R, Udaykumar H, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240MathSciNetMATHCrossRef
Zurück zum Zitat You D, Wang M, Moin P, Mittal R (2007) Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J Fluid Mech 586:177–204MATHCrossRef You D, Wang M, Moin P, Mittal R (2007) Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow. J Fluid Mech 586:177–204MATHCrossRef
Zurück zum Zitat Zahedi S, Tornberg AK (2010) Delta function approximations in level set methods by distance function extension. J Comput Phys 229:2199–2219MathSciNetMATHCrossRef Zahedi S, Tornberg AK (2010) Delta function approximations in level set methods by distance function extension. J Comput Phys 229:2199–2219MathSciNetMATHCrossRef
Zurück zum Zitat Zhang N, Zheng ZC (2007) An improved direct-forcing immersed-boundary method for finite difference applications. J Comput Phys 221(1):250–268MathSciNetMATHCrossRef Zhang N, Zheng ZC (2007) An improved direct-forcing immersed-boundary method for finite difference applications. J Comput Phys 221(1):250–268MathSciNetMATHCrossRef
Zurück zum Zitat Zhang X, Schmidt D, Perot B (2002) Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. J Comput Phys 175(2):764–791MATHCrossRef Zhang X, Schmidt D, Perot B (2002) Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics. J Comput Phys 175(2):764–791MATHCrossRef
Metadaten
Titel
Immersed Boundary Projection Methods
verfasst von
Benedikt Dorschner
Tim Colonius
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.