Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.03.2020 | Original Article | Ausgabe 6/2020

Medical & Biological Engineering & Computing 6/2020

Immunohistochemical index prediction of breast tumor based on multi-dimension features in contrast-enhanced ultrasound

Zeitschrift:
Medical & Biological Engineering & Computing > Ausgabe 6/2020
Autoren:
Fang Chen, Jia Liu, Peng Wan, Hongen Liao, Wentao Kong
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11517-020-02164-2) contains supplementary material, which is available to authorized users.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Breast cancer is the leading killer of Chinese women. Immunohistochemistry index has great significance in the treatment strategy selection and prognosis analysis for breast cancer patients. Currently, histopathological examination of the tumor tissue through surgical biopsy is the gold standard to determine immunohistochemistry index. However, this examination is invasive and commonly causes discomfort in patients. There has been a lack of noninvasive method capable of predicting immunohistochemistry index for breast cancer patients. This paper proposes a machine learning method to predict the immunohistochemical index of breast cancer patients by using noninvasive contrast-enhanced ultrasound. A total of 119 breast cancer patients were included in this retrospective study. Each patient implemented the pathological examination of immunohistochemical expression and underwent contrast-enhanced ultrasound imaging of breast tumor. The multi-dimension features including 266 three-dimension features and 837 two-dimension dynamic features were extracted from the contrast-enhanced ultrasound sequences. Using the machine learning prediction method, 21 selected multi-dimension features were integrated to generate a model for predicting the immunohistochemistry index noninvasively. The immunohistochemical index of human epidermal growth factor receptor-2 (HER2) was predicted based on multi-dimension features in contrast-enhanced ultrasound sequence with the sensitivity of 71%, and the specificity of 79% in the testing cohort. Therefore, the noninvasive contrast-enhanced ultrasound can be used to predict the immunohistochemical index. To our best knowledge, no studies have been reported about predicting immunohistochemical index by using contrast-enhanced ultrasound sequences for breast cancer patients. Our proposed method is noninvasive and can predict immunohistochemical index by using contrast-enhanced ultrasound in several minutes, instead of relying totally on the invasive and biopsy-based histopathological examination.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2020

Medical & Biological Engineering & Computing 6/2020 Zur Ausgabe

Premium Partner

    Bildnachweise