Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.11.2017 | Ausgabe 3/2018

Water Resources Management 3/2018

Impact of Normalization and Input on ARMAX-ANN Model Performance in Suspended Sediment Load Prediction

Zeitschrift:
Water Resources Management > Ausgabe 3/2018
Autoren:
Hamid Moeeni, Hossein Bonakdari

Abstract

The suspended sediment load in rivers is an important parameter in watershed planning and management. Since daily suspended sediment time series contain linear and nonlinear components, existing prediction models are associated with limitations. Therefore, this study introduces a new hybrid model comprising two commonly used stochastic and nonlinear models. The sediment load is first modeled by an autoregressive-moving average with exogenous terms (ARMAX) model. Subsequently, the ARMAX residuals are modeled with an artificial neural network (ANN). For this purpose, discharge (Q) and sediment (S) are considered as model input parameters. Three modeling scenarios are defined to investigate the impact of data normalization on the hybrid model. The exponential and Box-Cox transformation methods are combined into a new data normalization method called mixed transformation. The performance of these methods is then compared. In addition, the impact of the type and number of input combinations on ARMAX-ANN model accuracy is evaluated. To this end, 12 input combinations and 1331 ARMAX and ANN models are verified. The ARMAX model inputs include S, Q and the white noise disturbance term (e), while the ANN model inputs include the ARMAX model results and residuals. Moreover, the hybrid model’s accuracy is compared with the ARMAX and ANN models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2018

Water Resources Management 3/2018 Zur Ausgabe