Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.04.2020 | Ausgabe 5/2020

Education and Information Technologies 5/2020

Impact of the learning set’s size

Zeitschrift:
Education and Information Technologies > Ausgabe 5/2020
Autoren:
Adil Korchi, Mohamed Dardor, El Houssine Mabrouk
Wichtige Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Learning techniques have proven their capacity to treat large amount of data. Most statistical learning approaches use specific size learning sets and create static models. Withal, in certain some situations such as incremental or active learning the learning process can work with only a smal amount of data. In this case, the search for algorithms capable of producing models with only a few examples begin to be necessary. Generally, the literature relative to classifiers are evaluated according to criteria such as their classification performance, their ability to sort data. But this taxonomy of classifiers can singularly evolve if one is interested in their capabilities in the presence of some few examples. From our point of view, few studies have been carried out on this issue. It is in sense that this paper seeks to study a wider range of learning algorithms as well as data sets in order to show the power of every chosen algorithm that manipulates data. It also appears from this study, problem of algorithm’s choice to process small or large amount of data. And in order to resolve this, we will show that there are algorithms able of generating models with little data. In this case we look to select the smallest amount of data allowing the best learning to be achieved. We also wanted to show that some algorithms are capable of making good predictions with little data that is therefore necessary in order to have the least costly labeling procedure possible. And to concretize this, we will talk first about learning speed and typology of the tested algorithms to know the ability of a classifier to obtain an “interesting” solution to a classification problem using a minimum of examples present in learning, and we will know some various families of classification models based on parameter learning. After that, we will test all the classifiers mentioned previously such as linear and Non-linear classifiers. Then, we will seek to study the behavior these algorithms as a function of learning set’s size trough the experimental protocol in which various datasets will be Splited, manipulated and evaluated from the classification field in order to give results that merge from our experimental protocol. After that, we will discuss the obtained results through the global analysis section, and then conclude with recommendations.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

Education and Information Technologies 5/2020 Zur Ausgabe

Premium Partner

    Bildnachweise