Skip to main content
Erschienen in: Journal of Materials Science 4/2017

24.10.2016 | Original Paper

Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase

verfasst von: Marco Liebscher, Alex Lange, Christof Schröfl, Robert Fuge, Viktor Mechtcherine, Johann Plank, Albrecht Leonhardt

Erschienen in: Journal of Materials Science | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The working mechanism of carbon nanotube (CNT) dispersion by distinct methacrylate ester-based polycarboxylates (PCEs), all of which are highly efficient cement dispersants, was elucidated. Such duplex functionality of the PCE saves introducing an extra surfactant, which might cause severe adverse reactions in cement-based matrices. Eight PCEs exhibiting well-defined architectures were synthesized, characterized by gel permeation chromatography, and their influence on the dispersion capability of CNTs was assessed. The PCEs varied systematically with respect to their backbone length, grafting density, and side-chain length. Using optical microscopy, it was found that at a mass ratio of CNT:PCE = 1:1, pronounced differences manifested themselves in the state of the macro-dispersions, depending on the PCE architecture. However, a clear correlation between PCE structure and dispersing efficiency could not be established. A subsequent study applying equivalent numbers of PCE molecules revealed clear differences in the individual PCEs’ dispersibilities. The most efficient PCEs consisted of a long backbone combined with a high side-chain density. Lower side-chain densities as well as short backbones resulted in pronounced reduction in CNT-dispersing ability. Regarding side-chain length, no significant effect was found. Finally, a model for the dispersing mechanism leading to deagglomeration of the CNTs was proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Krüger A (2010) Carbon nanotubes. In: Carbon materials and nanotechnology. Wiley, Weinheim, pp 123–281 Krüger A (2010) Carbon nanotubes. In: Carbon materials and nanotechnology. Wiley, Weinheim, pp 123–281
2.
Zurück zum Zitat Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef
3.
Zurück zum Zitat Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013:80CrossRef Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013:80CrossRef
10.
Zurück zum Zitat Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46CrossRef Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46CrossRef
13.
Zurück zum Zitat Mohamed A, Anas AK, Bakar SA et al (2015) Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J Colloid Interface Sci 455:179–187. doi:10.1016/j.jcis.2015.05.054 CrossRef Mohamed A, Anas AK, Bakar SA et al (2015) Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J Colloid Interface Sci 455:179–187. doi:10.​1016/​j.​jcis.​2015.​05.​054 CrossRef
18.
Zurück zum Zitat Fuge R, Liebscher M, Schröfl C et al (2016) Fragmentation characteristics of undoped and nitrogen-doped multiwalled carbon nanotubes in aqueous dispersion in dependence on the ultrasonication parameters. Diam Relat Mater 66:126–134. doi:10.1016/j.diamond.2016.03.026 CrossRef Fuge R, Liebscher M, Schröfl C et al (2016) Fragmentation characteristics of undoped and nitrogen-doped multiwalled carbon nanotubes in aqueous dispersion in dependence on the ultrasonication parameters. Diam Relat Mater 66:126–134. doi:10.​1016/​j.​diamond.​2016.​03.​026 CrossRef
20.
Zurück zum Zitat Stephens C, Brown L, Sanchez F (2016) Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response. Carbon. doi:10.1016/j.carbon.2016.05.076 Stephens C, Brown L, Sanchez F (2016) Quantification of the re-agglomeration of carbon nanofiber aqueous dispersion in cement pastes and effect on the early age flexural response. Carbon. doi:10.​1016/​j.​carbon.​2016.​05.​076
22.
23.
25.
Zurück zum Zitat Yamada K, Ogawa S, Hanehara S (2001) Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase. Cem Concr Res 31:375–383. doi:10.1016/S0008-8846(00)00503-2 CrossRef Yamada K, Ogawa S, Hanehara S (2001) Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase. Cem Concr Res 31:375–383. doi:10.​1016/​S0008-8846(00)00503-2 CrossRef
26.
Zurück zum Zitat Sakai E, Yamada K, Ohta A (2003) Molecular structure and dispersion-adsorption mechanisms of comb-type superplasticizers used in Japan. J Adv Concr Technol 1:16–25. doi:10.3151/jact.1.16 CrossRef Sakai E, Yamada K, Ohta A (2003) Molecular structure and dispersion-adsorption mechanisms of comb-type superplasticizers used in Japan. J Adv Concr Technol 1:16–25. doi:10.​3151/​jact.​1.​16 CrossRef
27.
Zurück zum Zitat Puertas F, Santos H, Palacios M, Martínez-Ramírez S (2005) Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv Cem Res 17:77–89CrossRef Puertas F, Santos H, Palacios M, Martínez-Ramírez S (2005) Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv Cem Res 17:77–89CrossRef
29.
Zurück zum Zitat Plank J, Chatziagorastou P, Hirsch C (2007) New model describing distribution of adsorbed superplasticizer on the surface of hydrating cement grain. Jianzhu Cailiao Xuebao (J Build Mater) 10:7–13 Plank J, Chatziagorastou P, Hirsch C (2007) New model describing distribution of adsorbed superplasticizer on the surface of hydrating cement grain. Jianzhu Cailiao Xuebao (J Build Mater) 10:7–13
32.
Zurück zum Zitat Habbaba A, Lange A, Plank J (2013) Synthesis and performance of a modified polycarboxylate dispersant for concrete possessing enhanced cement compatibility. J Appl Polym Sci 129:346–353. doi:10.1002/app.38742 CrossRef Habbaba A, Lange A, Plank J (2013) Synthesis and performance of a modified polycarboxylate dispersant for concrete possessing enhanced cement compatibility. J Appl Polym Sci 129:346–353. doi:10.​1002/​app.​38742 CrossRef
33.
Zurück zum Zitat Marchon D, Sulser U, Eberhardt A, Flatt RJ (2013) Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete. Soft Matter 9:10719–10728. doi:10.1039/C3SM51030A CrossRef Marchon D, Sulser U, Eberhardt A, Flatt RJ (2013) Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete. Soft Matter 9:10719–10728. doi:10.​1039/​C3SM51030A CrossRef
35.
Zurück zum Zitat Lange A, Plank J (2015) Optimization of comb-shaped polycarboxylate cement dispersants to achieve fast-flowing mortar and concrete. J Appl Polym Sci. doi:10.1002/app.42529 Lange A, Plank J (2015) Optimization of comb-shaped polycarboxylate cement dispersants to achieve fast-flowing mortar and concrete. J Appl Polym Sci. doi:10.​1002/​app.​42529
39.
Zurück zum Zitat Kondofersky-Mintova I, Plank J (2012) Fundamental Interactions between multi-walled carbon nanotubes (MWCNT), Ca2+ and polycarboxylate superplasticizers in cementitious systems. In: Malhotra VM (ed) 10th international conference on superplasticizers and other chemical admixtures in concrete, SP-288-29. Farmington Hills (MI/USA), pp 423–434 Kondofersky-Mintova I, Plank J (2012) Fundamental Interactions between multi-walled carbon nanotubes (MWCNT), Ca2+ and polycarboxylate superplasticizers in cementitious systems. In: Malhotra VM (ed) 10th international conference on superplasticizers and other chemical admixtures in concrete, SP-288-29. Farmington Hills (MI/USA), pp 423–434
40.
41.
Zurück zum Zitat Chen SJ, Wang W, Sagoe-Crentsil K et al (2016) Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Adv 6:5745–5753. doi:10.1039/C5RA13511G CrossRef Chen SJ, Wang W, Sagoe-Crentsil K et al (2016) Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective. RSC Adv 6:5745–5753. doi:10.​1039/​C5RA13511G CrossRef
43.
Zurück zum Zitat Shah SP, Konsta-Gdoutos MS, Metaxa ZS (2011) Advanced cement based nanocomposites. In: Kounadis A, Gdoutos E (eds) Recent advances in mechanics. Springer, Netherlands, pp 313–327CrossRef Shah SP, Konsta-Gdoutos MS, Metaxa ZS (2011) Advanced cement based nanocomposites. In: Kounadis A, Gdoutos E (eds) Recent advances in mechanics. Springer, Netherlands, pp 313–327CrossRef
44.
Zurück zum Zitat Han B, Zhang K, Yu X et al (2011) Fabrication of piezoresistive CNT/CNF cementitious composites with superplasticizer as dispersant. J Mater Civ Eng 24:658–665CrossRef Han B, Zhang K, Yu X et al (2011) Fabrication of piezoresistive CNT/CNF cementitious composites with superplasticizer as dispersant. J Mater Civ Eng 24:658–665CrossRef
46.
Zurück zum Zitat Wille K, Loh K (2010) Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes. Transp Res Record 2142:119–126. doi:10.3141/2142-18 CrossRef Wille K, Loh K (2010) Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes. Transp Res Record 2142:119–126. doi:10.​3141/​2142-18 CrossRef
50.
Zurück zum Zitat Yazdanbakhsh A, Grasley Z, Tyson B, Abu Al-Rub RK (2010) Distribution of carbon nanofibers and nanotubes in cementitious composites. Transp Res Record 2142:89–95CrossRef Yazdanbakhsh A, Grasley Z, Tyson B, Abu Al-Rub RK (2010) Distribution of carbon nanofibers and nanotubes in cementitious composites. Transp Res Record 2142:89–95CrossRef
51.
Zurück zum Zitat Fakhim B, Hassani A, Rashidi A, Ghodousi P (2015) Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes. J Compos Mater 49:85–98. doi:10.1177/0021998313514873 CrossRef Fakhim B, Hassani A, Rashidi A, Ghodousi P (2015) Preparation and microstructural properties study on cement composites reinforced with multi-walled carbon nanotubes. J Compos Mater 49:85–98. doi:10.​1177/​0021998313514873​ CrossRef
53.
Zurück zum Zitat Yazdanbakhsh A, Grasley ZC, Tyson B, Al-Rub RKA (2009) Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond. Special Publ 267:21–34 Yazdanbakhsh A, Grasley ZC, Tyson B, Al-Rub RKA (2009) Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond. Special Publ 267:21–34
54.
55.
Zurück zum Zitat Jang S-H, Kawashima S, Yin H (2016) Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9:220. doi:10.3390/ma9040220 CrossRef Jang S-H, Kawashima S, Yin H (2016) Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9:220. doi:10.​3390/​ma9040220 CrossRef
56.
Zurück zum Zitat Blandine F, Habermehi-Cwirzen K, Cwirzen A (2016) Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste. Front Struct Civ Eng 1–12. doi:10.1007/s11709-016-0331-4 Blandine F, Habermehi-Cwirzen K, Cwirzen A (2016) Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste. Front Struct Civ Eng 1–12. doi:10.​1007/​s11709-016-0331-4
57.
Zurück zum Zitat Tyson BM, Abu Al-Rub RK, Yazdanbakhsh A, Grasley Z (2011) Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng 23:1028–1035CrossRef Tyson BM, Abu Al-Rub RK, Yazdanbakhsh A, Grasley Z (2011) Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng 23:1028–1035CrossRef
58.
59.
Zurück zum Zitat Yazdanbakhsh A, Chu C (2015) The effect of carbon nanofibers on the strength of concrete with natural and recycled aggregates. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, New York, pp 277–283 Yazdanbakhsh A, Chu C (2015) The effect of carbon nanofibers on the strength of concrete with natural and recycled aggregates. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, New York, pp 277–283
60.
Zurück zum Zitat Lestari Y, Bahri S, Sugiarti E, et al (2013) Effect of different dispersants in compressive strength of carbon fiber cementitious composites. In: AIP Conference Proceedings. AIP Publishing, Melville, pp 67–69 Lestari Y, Bahri S, Sugiarti E, et al (2013) Effect of different dispersants in compressive strength of carbon fiber cementitious composites. In: AIP Conference Proceedings. AIP Publishing, Melville, pp 67–69
61.
Zurück zum Zitat Gay C, Sanchez F (2010) Performance of carbon nanofiber-cement composites with a high-range water reducer. Transp Res Record 2142:109–113CrossRef Gay C, Sanchez F (2010) Performance of carbon nanofiber-cement composites with a high-range water reducer. Transp Res Record 2142:109–113CrossRef
63.
Zurück zum Zitat Wotring E, Mondal P, Marsh C (2015) Characterizing the dispersion of graphene nanoplatelets in water with water reducing admixture. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, New York, pp 141–148 Wotring E, Mondal P, Marsh C (2015) Characterizing the dispersion of graphene nanoplatelets in water with water reducing admixture. In: Sobolev K, Shah SP (eds) Nanotechnology in construction. Springer, New York, pp 141–148
64.
Zurück zum Zitat Metaxa ZS (2015) Polycarboxylate based superplasticizers as dispersant agents for xGnPs reinforcing cement based materials. J Eng Sci Technol Rev 8:1–5 Metaxa ZS (2015) Polycarboxylate based superplasticizers as dispersant agents for xGnPs reinforcing cement based materials. J Eng Sci Technol Rev 8:1–5
67.
Zurück zum Zitat Sharma S, Kothiyal NC (2015) Synergistic effect of zero-dimensional spherical carbon nanoparticles and one-dimensional carbon nanotubes on properties of cement-based ceramic matrix: microstructural perspectives and crystallization investigations. Compos Interfaces 22:899–921. doi:10.1080/09276440.2015.1076281 CrossRef Sharma S, Kothiyal NC (2015) Synergistic effect of zero-dimensional spherical carbon nanoparticles and one-dimensional carbon nanotubes on properties of cement-based ceramic matrix: microstructural perspectives and crystallization investigations. Compos Interfaces 22:899–921. doi:10.​1080/​09276440.​2015.​1076281 CrossRef
69.
Zurück zum Zitat Wieneke B (2010) Neue Ansätze zum Verständnis des Wirkmechanismus von Schwindreduzierern in zementären Systemen. Verlag Dr, Hut Wieneke B (2010) Neue Ansätze zum Verständnis des Wirkmechanismus von Schwindreduzierern in zementären Systemen. Verlag Dr, Hut
71.
Zurück zum Zitat Winterhalter M, Bürner H, Marzinka S et al (1995) Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential. Biophys J 69:1372–1381CrossRef Winterhalter M, Bürner H, Marzinka S et al (1995) Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential. Biophys J 69:1372–1381CrossRef
73.
Zurück zum Zitat Wang P, Kosinski JJ, Anderko A et al (2013) Ethylene glycol and its mixtures with water and electrolytes: thermodynamic and transport properties. Ind Eng Chem Res 52:15968–15987. doi:10.1021/ie4019353 CrossRef Wang P, Kosinski JJ, Anderko A et al (2013) Ethylene glycol and its mixtures with water and electrolytes: thermodynamic and transport properties. Ind Eng Chem Res 52:15968–15987. doi:10.​1021/​ie4019353 CrossRef
Metadaten
Titel
Impact of the molecular architecture of polycarboxylate superplasticizers on the dispersion of multi-walled carbon nanotubes in aqueous phase
verfasst von
Marco Liebscher
Alex Lange
Christof Schröfl
Robert Fuge
Viktor Mechtcherine
Johann Plank
Albrecht Leonhardt
Publikationsdatum
24.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0522-3

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.