Skip to main content
Erschienen in: Mitigation and Adaptation Strategies for Global Change 8/2016

01.12.2016 | Original Article

Impact of urban water supply on energy use in China: a provincial and national comparison

verfasst von: Kate Smith, Shuming Liu, Yi Liu, Dragan Savic, Gustaf Olsson, Tian Chang, Xue Wu

Erschienen in: Mitigation and Adaptation Strategies for Global Change | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To reduce greenhouse gas (GHG) emissions and help mitigate climate change, urban water systems need to be adapted so that electrical energy use is minimised. In this study, energy data from 2011 was used to quantify energy use in China’s urban water supply sector. The objective was to calculate the energy co-benefits of urban water conservation policies and compare energy use between China and other countries. The study investigated influencing factors with the aim of informing the development of energy efficient urban water infrastructure. The average energy use per cubic metre and per capita for urban water supply in China in 2011 was 0.29 kWh/m3 and 33.2 kWh/cap year, respectively. Total GHG emissions associated with energy use in the urban water supply sector were 7.63 MtCO2e, or carbon dioxide equivalent. Calculations using these indicators showed significant energy savings could result from water conservation measures. A comparison between provinces of China showed a direct correlation between energy intensity of urban water supply and the population served per unit length of pipe. This may imply energy and emission intensity can be reduced if more densely populated areas are supplied by a corresponding pipe density, rather than by a low-density network operating at higher flow rates. This study also found that while the percentage of electrical energy used for urban water supply tended to increase with the percentage of population served, this increase was slower where water supply was more energy efficient and where a larger percentage of population was already supplied.
Literatur
Zurück zum Zitat Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T et al (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrolog Sci J 48:317–37CrossRef Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T et al (2003) Development and testing of the WaterGAP 2 global model of water use and availability. Hydrolog Sci J 48:317–37CrossRef
Zurück zum Zitat Buckley C, Friedrich E, von Blottnitz H (2011) Life-cycle assessments in the South African water sector: a review and future challenges. Water SA 37:719–26CrossRef Buckley C, Friedrich E, von Blottnitz H (2011) Life-cycle assessments in the South African water sector: a review and future challenges. Water SA 37:719–26CrossRef
Zurück zum Zitat CEPP (China Electric Power Press) (2012) China electric power yearbook. China Electric Power Press, Beijing CEPP (China Electric Power Press) (2012) China electric power yearbook. China Electric Power Press, Beijing
Zurück zum Zitat Chavez-Rodriguez MF, Nebra SA (2010) Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Environ Sci Technol 44:9252–7CrossRef Chavez-Rodriguez MF, Nebra SA (2010) Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Environ Sci Technol 44:9252–7CrossRef
Zurück zum Zitat Chen Y, Li L, Jiang L, Grady C, Li X (2013) The impact of urban water use on energy consumption and climate change: a case study of household water use in Beijing. In: Younos T, Grady CA (eds) Climate change and water resources. Hdb Env Chem, Springer-Verlag, Berlin, pp 169–98CrossRef Chen Y, Li L, Jiang L, Grady C, Li X (2013) The impact of urban water use on energy consumption and climate change: a case study of household water use in Beijing. In: Younos T, Grady CA (eds) Climate change and water resources. Hdb Env Chem, Springer-Verlag, Berlin, pp 169–98CrossRef
Zurück zum Zitat Cohen R, Nelson B, Wolff G (2004) Energy down the drain: the hidden costs of California’s water supply. Natural Resources Defence Council and Pacific Institute, Oakland Cohen R, Nelson B, Wolff G (2004) Energy down the drain: the hidden costs of California’s water supply. Natural Resources Defence Council and Pacific Institute, Oakland
Zurück zum Zitat Corcoran L, Coughlan P, McNabola A (2013) Energy recovery potential using micro hydropower in water supply networks in the UK and Ireland. Water Sci Tech-W Sup 13:552–60CrossRef Corcoran L, Coughlan P, McNabola A (2013) Energy recovery potential using micro hydropower in water supply networks in the UK and Ireland. Water Sci Tech-W Sup 13:552–60CrossRef
Zurück zum Zitat CUWA (China Urban Water Association) (2012) Urban water supply yearbook. China Urban Water Association, Beijing (in Chinese) CUWA (China Urban Water Association) (2012) Urban water supply yearbook. China Urban Water Association, Beijing (in Chinese)
Zurück zum Zitat EPRI (Electric Power Research Institute) (2002) Water and sustainability (volume 4): U.S. electricity consumption for water supply and treatment: the next half century. Electric Power Research Institute, Palo Alto EPRI (Electric Power Research Institute) (2002) Water and sustainability (volume 4): U.S. electricity consumption for water supply and treatment: the next half century. Electric Power Research Institute, Palo Alto
Zurück zum Zitat Filion YR (2008) Impact of urban form on energy use in water distribution systems. J Infrastruct Syst 14:337–46CrossRef Filion YR (2008) Impact of urban form on energy use in water distribution systems. J Infrastruct Syst 14:337–46CrossRef
Zurück zum Zitat Friedrich E (2002) Life-cycle assessment as an environmental management tool in the production of potable water. Water Sci Technol 46:29–36 Friedrich E (2002) Life-cycle assessment as an environmental management tool in the production of potable water. Water Sci Technol 46:29–36
Zurück zum Zitat Friedrich E, Pillay S, Buckley CA (2009) Environmental life cycle assessments for water treatment processes—a South African case study of an urban water cycle. Water SA 35:73–84 Friedrich E, Pillay S, Buckley CA (2009) Environmental life cycle assessments for water treatment processes—a South African case study of an urban water cycle. Water SA 35:73–84
Zurück zum Zitat Green F, Stern N (2014) An innovative and sustainable growth plan for China: A critical decade. Centre for Climate Change Economics and Policy/Grantham Research Institute on Climate Change and the Environment Green F, Stern N (2014) An innovative and sustainable growth plan for China: A critical decade. Centre for Climate Change Economics and Policy/Grantham Research Institute on Climate Change and the Environment
Zurück zum Zitat Gregory KB, Vidic RD, Dzombak DA (2011) Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7:181–6CrossRef Gregory KB, Vidic RD, Dzombak DA (2011) Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7:181–6CrossRef
Zurück zum Zitat Griffiths-Sattenspiel B, Wilson W (2009) The carbon footprint of water. River Network, Portland Griffiths-Sattenspiel B, Wilson W (2009) The carbon footprint of water. River Network, Portland
Zurück zum Zitat Hu GP, Ou XM, Zhang Q, Karplus VJ (2013) Analysis on energy-water nexus by Sankey diagram: the case of Beijing. Desalin Water Treat 51:4183–93CrossRef Hu GP, Ou XM, Zhang Q, Karplus VJ (2013) Analysis on energy-water nexus by Sankey diagram: the case of Beijing. Desalin Water Treat 51:4183–93CrossRef
Zurück zum Zitat Hutson SS (2004) Estimated use of water in the United States in 2000. U.S. Geological Survey, Reston Hutson SS (2004) Estimated use of water in the United States in 2000. U.S. Geological Survey, Reston
Zurück zum Zitat Kahrl F, Roland-Holst D (2008) China’s water-energy nexus. Water Policy 10:51–65CrossRef Kahrl F, Roland-Holst D (2008) China’s water-energy nexus. Water Policy 10:51–65CrossRef
Zurück zum Zitat Kargbo DM, Wilhelm RG, Campbell DJ (2010) Natural gas plays in the Marcellus Shale: challenges and potential opportunities. Environ Sci Technol 44:5679–84CrossRef Kargbo DM, Wilhelm RG, Campbell DJ (2010) Natural gas plays in the Marcellus Shale: challenges and potential opportunities. Environ Sci Technol 44:5679–84CrossRef
Zurück zum Zitat Kenway SJ, Priestley A, Cook S, Seo S, Inman M, Gregory A et al (2008) Energy use in the provision and consumption of urban water in Australia and New Zealand. Commonwealth Scientific and Industrial Research Organisation, Melbourne Kenway SJ, Priestley A, Cook S, Seo S, Inman M, Gregory A et al (2008) Energy use in the provision and consumption of urban water in Australia and New Zealand. Commonwealth Scientific and Industrial Research Organisation, Melbourne
Zurück zum Zitat Klein G, Krebs M, Hall V, O’Brien T, Blevins BB (2005) California’s water-energy relationship. California Energy Commission, Sacramento Klein G, Krebs M, Hall V, O’Brien T, Blevins BB (2005) California’s water-energy relationship. California Energy Commission, Sacramento
Zurück zum Zitat Kyung D, Kim D, Park N, Lee W (2013) Estimation of CO2 emission from water treatment plant—model development and application. J Environ Manage 131:74–81CrossRef Kyung D, Kim D, Park N, Lee W (2013) Estimation of CO2 emission from water treatment plant—model development and application. J Environ Manage 131:74–81CrossRef
Zurück zum Zitat Li X, Feng KS, Siu YL, Hubacek K (2012) Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energ Policy 45:440–8CrossRef Li X, Feng KS, Siu YL, Hubacek K (2012) Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energ Policy 45:440–8CrossRef
Zurück zum Zitat Liang S, Zhang TZ (2011) Interactions of energy technology development and new energy exploitation with water technology development in China. Energy 36:6960–6CrossRef Liang S, Zhang TZ (2011) Interactions of energy technology development and new energy exploitation with water technology development in China. Energy 36:6960–6CrossRef
Zurück zum Zitat Lingsten A, Lundkvist M, Hellstrom D, Balmer P (2008) Description of the current energy use in water and waterwater systems in Sweden. The Swedish Water & Wastewater Association (SWWA), Stockholm Lingsten A, Lundkvist M, Hellstrom D, Balmer P (2008) Description of the current energy use in water and waterwater systems in Sweden. The Swedish Water & Wastewater Association (SWWA), Stockholm
Zurück zum Zitat Meda A, Lensch D, Schaum C, Cornel P (2012) Energy and water: relations and recovery potential. In: Lazarova V, Choo KH, Cornel P (eds) Water-energy interactions of water reuse. IWA Publishing, London, pp 21–35 Meda A, Lensch D, Schaum C, Cornel P (2012) Energy and water: relations and recovery potential. In: Lazarova V, Choo KH, Cornel P (eds) Water-energy interactions of water reuse. IWA Publishing, London, pp 21–35
Zurück zum Zitat Miller LA, Ramaswami A, Ranjan R (2013) Contribution of water and wastewater infrastructures to urban energy metabolism and greenhouse gas emissions in cities in India. J Environ Eng-Asce 139:738–45CrossRef Miller LA, Ramaswami A, Ranjan R (2013) Contribution of water and wastewater infrastructures to urban energy metabolism and greenhouse gas emissions in cities in India. J Environ Eng-Asce 139:738–45CrossRef
Zurück zum Zitat Murray KE (2013) State-scale perspective on water use and production associated with oil and gas operations, Oklahoma, U.S. Environ Sci Technol 47:4918–25CrossRef Murray KE (2013) State-scale perspective on water use and production associated with oil and gas operations, Oklahoma, U.S. Environ Sci Technol 47:4918–25CrossRef
Zurück zum Zitat Olsson G (2012a) Water and energy: conflicts and connections. Water 21(14):12–6 Olsson G (2012a) Water and energy: conflicts and connections. Water 21(14):12–6
Zurück zum Zitat Olsson G (2012b) Water and energy: threats and opportunities. IWA Publishing, London Olsson G (2012b) Water and energy: threats and opportunities. IWA Publishing, London
Zurück zum Zitat Pan LY, Liu P, Ma LW, Li Z (2012) A supply chain based assessment of water issues in the coal industry in China. Energ Policy 48:93–102CrossRef Pan LY, Liu P, Ma LW, Li Z (2012) A supply chain based assessment of water issues in the coal industry in China. Energ Policy 48:93–102CrossRef
Zurück zum Zitat PRC (People’s Republic of China) (1999) Code for Urban Water Supply Engineering Planning GB 50282–98, People’s Republic of China National Standards PRC (People’s Republic of China) (1999) Code for Urban Water Supply Engineering Planning GB 50282–98, People’s Republic of China National Standards
Zurück zum Zitat Racoviceanu AI, Karney BW, Kennedy CA, Colombo AF (2007) Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems. J Infrastruct Syst 13:261–70CrossRef Racoviceanu AI, Karney BW, Kennedy CA, Colombo AF (2007) Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems. J Infrastruct Syst 13:261–70CrossRef
Zurück zum Zitat Rothausen SGSA, Conway D (2011) Greenhouse-gas emissions from energy use in the water sector. Nat Clim Chang 1:210–9CrossRef Rothausen SGSA, Conway D (2011) Greenhouse-gas emissions from energy use in the water sector. Nat Clim Chang 1:210–9CrossRef
Zurück zum Zitat Schneider K (2011) Water needs curtail coal gasification for fuel. Water Front Magazine, Stockholm, pp 12–3 Schneider K (2011) Water needs curtail coal gasification for fuel. Water Front Magazine, Stockholm, pp 12–3
Zurück zum Zitat Siddiqi A, Anadon LD (2011) The water-energy nexus in Middle East and North Africa. Energ Policy 39:4529–40CrossRef Siddiqi A, Anadon LD (2011) The water-energy nexus in Middle East and North Africa. Energ Policy 39:4529–40CrossRef
Zurück zum Zitat Smith K, Liu S, Chang T (2015) Contribution of urban water supply to greenhouse gas emissions in China. J Ind Ecol. doi:10.1111/jiec.12290 Smith K, Liu S, Chang T (2015) Contribution of urban water supply to greenhouse gas emissions in China. J Ind Ecol. doi:10.1111/jiec.12290
Zurück zum Zitat Stokes JR, Horvath A (2009) Energy and air emission effects of water supply. Environ Sci Technol 43:2680–7CrossRef Stokes JR, Horvath A (2009) Energy and air emission effects of water supply. Environ Sci Technol 43:2680–7CrossRef
Zurück zum Zitat Sweetapple C, Fu GT, Butler D (2014) Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Res 55:52–62CrossRef Sweetapple C, Fu GT, Butler D (2014) Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Res 55:52–62CrossRef
Zurück zum Zitat Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36:792–800CrossRef Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36:792–800CrossRef
Zurück zum Zitat Vieira AS, Beal CD, Ghisi E, Stewart RA (2014) Energy intensity of rainwater harvesting systems: a review. Renew Sust Energ Rev 34:225–42CrossRef Vieira AS, Beal CD, Ghisi E, Stewart RA (2014) Energy intensity of rainwater harvesting systems: a review. Renew Sust Energ Rev 34:225–42CrossRef
Zurück zum Zitat Wang JX, Rothausen SGSA, Conway D, Zhang LJ, Xiong W, Holman IP et al (2012) China’s water-energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environ Res Lett 7:1–10 Wang JX, Rothausen SGSA, Conway D, Zhang LJ, Xiong W, Holman IP et al (2012) China’s water-energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environ Res Lett 7:1–10
Zurück zum Zitat Wang JL, Feng LY, Tverberg GE (2013) An analysis of China’s coal supply and its impact on China’s future economic growth. Energ Policy 57:542–51CrossRef Wang JL, Feng LY, Tverberg GE (2013) An analysis of China’s coal supply and its impact on China’s future economic growth. Energ Policy 57:542–51CrossRef
Zurück zum Zitat Webster M, Donohoo P, Palmintier B (2013) Water-CO2 trade-offs in electricity generation planning. Nat Clim Chang 3:1029–32CrossRef Webster M, Donohoo P, Palmintier B (2013) Water-CO2 trade-offs in electricity generation planning. Nat Clim Chang 3:1029–32CrossRef
Zurück zum Zitat Yang H, Zhou Y, Liu JG (2009) Land and water requirements of biofuel and implications for food supply and the environment in China. Energ Policy 37:1876–85CrossRef Yang H, Zhou Y, Liu JG (2009) Land and water requirements of biofuel and implications for food supply and the environment in China. Energ Policy 37:1876–85CrossRef
Zurück zum Zitat Zhou YC, Zhang B, Wang HK, Bi J (2013) Drops of energy: conserving urban water to reduce greenhouse gas emissions. Environ Sci Technol 47:10753–61CrossRef Zhou YC, Zhang B, Wang HK, Bi J (2013) Drops of energy: conserving urban water to reduce greenhouse gas emissions. Environ Sci Technol 47:10753–61CrossRef
Zurück zum Zitat Zou X, Li Y, Li K, Cremades R, Gao Q, Wan Y, Qin X (2013) Greenhouse gas emissions from agricultural irrigation in China. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-013-9492-9 Zou X, Li Y, Li K, Cremades R, Gao Q, Wan Y, Qin X (2013) Greenhouse gas emissions from agricultural irrigation in China. Mitig Adapt Strateg Glob Chang. doi:10.​1007/​s11027-013-9492-9
Metadaten
Titel
Impact of urban water supply on energy use in China: a provincial and national comparison
verfasst von
Kate Smith
Shuming Liu
Yi Liu
Dragan Savic
Gustaf Olsson
Tian Chang
Xue Wu
Publikationsdatum
01.12.2016
Verlag
Springer Netherlands
Erschienen in
Mitigation and Adaptation Strategies for Global Change / Ausgabe 8/2016
Print ISSN: 1381-2386
Elektronische ISSN: 1573-1596
DOI
https://doi.org/10.1007/s11027-015-9648-x

Weitere Artikel der Ausgabe 8/2016

Mitigation and Adaptation Strategies for Global Change 8/2016 Zur Ausgabe