Skip to main content
Erschienen in:

05.09.2023

Impact of various Mg(OH)\(_{2}\) morphologies on hydrophobicity, mechanical, and physical properties of polyurethane nanocomposite

verfasst von: Zahra Rajabimashhadi, Rahim Naghizadeh, Ashkan Zolriasatein, Sonia Bagheri, Claudio Mele, Carola Esposito Corcione

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyurethane (PU) is one of the best polymer coatings due to its wide range of advantages such as easy fabrication, lightness, non-toxicity, durability, adhesion, flexibility, and strength. However, some of its drawbacks make it a suitable choice for the manufacturing of nanocomposites to enhance its properties. Hydrophobicity and flame retardancy are two of the most crucial characteristics of a polymer nanocoating. Magnesium hydroxide (MH), with its ability to be produced in a multitude of morphologies and exceptional properties, especially in flame retardancy, has always attracted the interest of researchers. One of the best methods for synthesizing high-purity, controlled-size, and controlled-shape nanoparticles is the hydrothermal technique. In this paper, magnesium chloride and sodium hydroxide were utilized as raw materials to synthesize four different morphologies of MH, such as plate, flake, spherical, and disk, functionalized using 3-Aminopropyl triethoxysilane (APTES). In the following, PU nanocomposites were fabricated by drop casting method including 3 % w.t. of different synthesized MH. The influence of each morphology on different properties of PU/Mg(OH)\(_{2}\) was then investigated using different analyses such as spectroscopy, mechanical, and hydrophobicity tests. The observations indicated that different surface topography would result from the presence of nanoparticles with various morphologies on the nanocomposite’s surface. Extremely high water contact angles were attained as a result of the surface roughness, revealing the super hydrophobic behavior of the produced nanocoatings. Also, the presence of MH in PU matrix improved the mechanical properties of the nanocomposite, depending on the aspect ratio and particle size.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, Z, Du, J, Li, J, Huang, X, Kang, T, Zhang, C, Wang, S, Ajao, OO, Wang, W-J, Liu, P, “Polymer Nanocomposites with Aligned Two-Dimensional Materials.” Prog. Polym. Sci., 114 101360 (2021)CrossRef Zhang, Z, Du, J, Li, J, Huang, X, Kang, T, Zhang, C, Wang, S, Ajao, OO, Wang, W-J, Liu, P, “Polymer Nanocomposites with Aligned Two-Dimensional Materials.” Prog. Polym. Sci., 114 101360 (2021)CrossRef
2.
Zurück zum Zitat Pavlidou, S, Papaspyrides, C, “A Review on Polymer-Layered Silicate Nanocomposites.” Prog. Polym. Sci., 33 (12) 119–1198 (2008)CrossRef Pavlidou, S, Papaspyrides, C, “A Review on Polymer-Layered Silicate Nanocomposites.” Prog. Polym. Sci., 33 (12) 119–1198 (2008)CrossRef
3.
Zurück zum Zitat Kausar, A, “Strategies in Polymeric Nanoparticles and Hybrid Polymer Nanoparticles.” NanoWorld J., 5 (1) 1–5 (2019)CrossRef Kausar, A, “Strategies in Polymeric Nanoparticles and Hybrid Polymer Nanoparticles.” NanoWorld J., 5 (1) 1–5 (2019)CrossRef
4.
Zurück zum Zitat Soucek, M, Zong, Z, Johnson, A, “Inorganic/Organic Nanocomposite Coatings: The Next Step in Coating Performance.” JCT Res., 3 (2) 133–140 (2006) Soucek, M, Zong, Z, Johnson, A, “Inorganic/Organic Nanocomposite Coatings: The Next Step in Coating Performance.” JCT Res., 3 (2) 133–140 (2006)
5.
Zurück zum Zitat Kausar, A, “Polyurethane Composite Foams in High-Performance Applications: A Review.” Polym.-Plastics Technol. Eng., 57 (4) 346–369 (2018)CrossRef Kausar, A, “Polyurethane Composite Foams in High-Performance Applications: A Review.” Polym.-Plastics Technol. Eng., 57 (4) 346–369 (2018)CrossRef
6.
Zurück zum Zitat Ji, M, Huang, J, Zhu, C, “Methods for Synthesizing Polymer Nanocomposites and Their Applications.” Funct. Nanomater. Synthesis, Properties, Appl., 447–490 (2022) Ji, M, Huang, J, Zhu, C, “Methods for Synthesizing Polymer Nanocomposites and Their Applications.” Funct. Nanomater. Synthesis, Properties, Appl., 447–490 (2022)
7.
Zurück zum Zitat Chattopadhyay, DK, Raju, K, “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32 (3) 352–418 (2007)CrossRef Chattopadhyay, DK, Raju, K, “Structural Engineering of Polyurethane Coatings for High Performance Applications.” Prog. Polym. Sci., 32 (3) 352–418 (2007)CrossRef
8.
Zurück zum Zitat Jing, Q, Liu, W, Pan, Y, Silberschmidt, VV, Li, L, Dong, Z, “Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites.” Mater. Design, 85 808–814 (2015)CrossRef Jing, Q, Liu, W, Pan, Y, Silberschmidt, VV, Li, L, Dong, Z, “Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites.” Mater. Design, 85 808–814 (2015)CrossRef
9.
Zurück zum Zitat Suleman, S, Khan, SM, Gull, N, Aleem, W, Shafiq, M, Jamil, T, “A Comprehensive Short Review on Polyurethane Foam.” Int. J. Innov. Sci. Res., 12 165–169 (2014) Suleman, S, Khan, SM, Gull, N, Aleem, W, Shafiq, M, Jamil, T, “A Comprehensive Short Review on Polyurethane Foam.” Int. J. Innov. Sci. Res., 12 165–169 (2014)
10.
Zurück zum Zitat Kausar, A, “Polyurethane Nanocomposite Coatings: State of the Art and Perspectives.” Polym. Int., 67 (11) 1470–1477 (2018)CrossRef Kausar, A, “Polyurethane Nanocomposite Coatings: State of the Art and Perspectives.” Polym. Int., 67 (11) 1470–1477 (2018)CrossRef
11.
Zurück zum Zitat Xiong, J, Zheng, Z, Qin, X, Li, M, Li, H, Wang, X, “The Thermal and Mechanical Properties of a Polyurethane/Multi-Walled Carbon Nanotube Composite.” Carbon, 44 (13) 2701–2707 (2006)CrossRef Xiong, J, Zheng, Z, Qin, X, Li, M, Li, H, Wang, X, “The Thermal and Mechanical Properties of a Polyurethane/Multi-Walled Carbon Nanotube Composite.” Carbon, 44 (13) 2701–2707 (2006)CrossRef
12.
Zurück zum Zitat Zia, F, Zia, KM, Aftab, W, Tabasum, S, Asrar, M, et al., “Synthesis and Characterization of Hydroxyethyl Cellulose Copolymer Modified Polyurethane Bionanocomposites.” Int. J. Biol. Macromol., 179 345–352 (2021)CrossRef Zia, F, Zia, KM, Aftab, W, Tabasum, S, Asrar, M, et al., “Synthesis and Characterization of Hydroxyethyl Cellulose Copolymer Modified Polyurethane Bionanocomposites.” Int. J. Biol. Macromol., 179 345–352 (2021)CrossRef
13.
Zurück zum Zitat Allami, T, Alamiery, A, Nassir, MH, Kadhum, AH, “Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications.” Polymers, 13 (15) 2467 (2021)CrossRef Allami, T, Alamiery, A, Nassir, MH, Kadhum, AH, “Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications.” Polymers, 13 (15) 2467 (2021)CrossRef
14.
Zurück zum Zitat Ciecierska, E, Jurczyk-Kowalska, M, Bazarnik, P, Gloc, M, Kulesza, M, Kowalski, M, Krauze, S, Lewandowska, M, “Flammability, Mechanical Properties and Structure of Rigid Polyurethane Foams with Different Types of Carbon Reinforcing Materials.” Compos. Struct., 140 67–76 (2016)CrossRef Ciecierska, E, Jurczyk-Kowalska, M, Bazarnik, P, Gloc, M, Kulesza, M, Kowalski, M, Krauze, S, Lewandowska, M, “Flammability, Mechanical Properties and Structure of Rigid Polyurethane Foams with Different Types of Carbon Reinforcing Materials.” Compos. Struct., 140 67–76 (2016)CrossRef
15.
Zurück zum Zitat Subhani, T, Latif, M, Ahmad, I, Rakha, SA, Ali, N, Khurram, AA, “Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds.” Mater. Design, 87 436–444 (2015)CrossRef Subhani, T, Latif, M, Ahmad, I, Rakha, SA, Ali, N, Khurram, AA, “Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds.” Mater. Design, 87 436–444 (2015)CrossRef
16.
Zurück zum Zitat Albozahid, M, Naji, HZ, Alobad, ZK, Saiani, A, “Enhanced Mechanical, Crystallisation and Thermal Properties of Graphene Flake-Filled Polyurethane Nanocomposites: The Impact of Thermal Treatment on the Resulting Microphase-Separated Structure.” J. Polym. Res., 28 (8) 1–16 (2021)CrossRef Albozahid, M, Naji, HZ, Alobad, ZK, Saiani, A, “Enhanced Mechanical, Crystallisation and Thermal Properties of Graphene Flake-Filled Polyurethane Nanocomposites: The Impact of Thermal Treatment on the Resulting Microphase-Separated Structure.” J. Polym. Res., 28 (8) 1–16 (2021)CrossRef
17.
Zurück zum Zitat Ma, Z, Li, Q, Wei, J, Liang, C, Yang, T, Wang, G, Xia, C, “Effects of Al-Based Alloy Powders on the Mechanical Behavior, Corrosion Resistance and Infrared Emissivity of Polyurethane Composite Coatings.” Coll. Surfaces A: Physicochem. Eng. Aspects, 624 126782 (2021)CrossRef Ma, Z, Li, Q, Wei, J, Liang, C, Yang, T, Wang, G, Xia, C, “Effects of Al-Based Alloy Powders on the Mechanical Behavior, Corrosion Resistance and Infrared Emissivity of Polyurethane Composite Coatings.” Coll. Surfaces A: Physicochem. Eng. Aspects, 624 126782 (2021)CrossRef
18.
Zurück zum Zitat Maganty, S, Roma, MP, Meschter, SJ, Starkey, D, Gomez, M, Edwards, DG, Ekin, A, Elsken, K, Cho, J, “Enhanced Mechanical Properties of Polyurethane Composite Coatings Through Nanosilica Addition.” Prog. Org. Coat., 90 243–251 (2016)CrossRef Maganty, S, Roma, MP, Meschter, SJ, Starkey, D, Gomez, M, Edwards, DG, Ekin, A, Elsken, K, Cho, J, “Enhanced Mechanical Properties of Polyurethane Composite Coatings Through Nanosilica Addition.” Prog. Org. Coat., 90 243–251 (2016)CrossRef
19.
Zurück zum Zitat Chattopadhyay, D, Webster, DC, “Thermal Stability and Flame Retardancy of Polyurethanes.” Prog. Polym. Sci., 34 (10) 1068–1133 (2009)CrossRef Chattopadhyay, D, Webster, DC, “Thermal Stability and Flame Retardancy of Polyurethanes.” Prog. Polym. Sci., 34 (10) 1068–1133 (2009)CrossRef
20.
Zurück zum Zitat Mogha, A, “Clay and Carbon Nanotubes as the Potential Fillers for Polyurethanes for Flame-Retardant Coatings.” In: Materials and Chemistry of Flame-Retardant Polyurethanes Volume 2: Green Flame Retardants 2 pp. 31–45. ACS Publications, (2021) Mogha, A, “Clay and Carbon Nanotubes as the Potential Fillers for Polyurethanes for Flame-Retardant Coatings.” In: Materials and Chemistry of Flame-Retardant Polyurethanes Volume 2: Green Flame Retardants 2 pp. 31–45. ACS Publications, (2021)
21.
Zurück zum Zitat Peng, S, Iroh, JO, “Dependence of the Dynamic Mechanical Properties and Structure of Polyurethane-Clay Nanocomposites on the Weight Fraction of Clay.” J. Compos. Sci., 6 (6) 173 (2022)CrossRef Peng, S, Iroh, JO, “Dependence of the Dynamic Mechanical Properties and Structure of Polyurethane-Clay Nanocomposites on the Weight Fraction of Clay.” J. Compos. Sci., 6 (6) 173 (2022)CrossRef
22.
Zurück zum Zitat Skosana, SJ, Khoathane, C, Malwela, T, “Enhancing the Adhesion Strength of Polyurethane Coatings by Dispersing Layered Silicates via Sonication and High-Shear Mixing Method.” Polym. Bull., 78 (1) 203–221 (2021)CrossRef Skosana, SJ, Khoathane, C, Malwela, T, “Enhancing the Adhesion Strength of Polyurethane Coatings by Dispersing Layered Silicates via Sonication and High-Shear Mixing Method.” Polym. Bull., 78 (1) 203–221 (2021)CrossRef
23.
Zurück zum Zitat Sitthisuwannakul, K, Boonpavanitchakul, K, Wirunmongkol, T, Muthitamongkol, P, Kangwansupamonkon, W, “A Tunable Controlled-Release Urea Fertilizer Coated with a Biodegradable Polyurethane-Nanoclay Composite Layer.” J. Coat. Technol. Res., 1–12 (2022) Sitthisuwannakul, K, Boonpavanitchakul, K, Wirunmongkol, T, Muthitamongkol, P, Kangwansupamonkon, W, “A Tunable Controlled-Release Urea Fertilizer Coated with a Biodegradable Polyurethane-Nanoclay Composite Layer.” J. Coat. Technol. Res., 1–12 (2022)
24.
Zurück zum Zitat Huang, W, Huang, J, Yu, B, Meng, Y, Cao, X, Zhang, Q, Wu, W, Shi, D, Jiang, T, Li, RK, “Facile Preparation of Phosphorus Containing Hyperbranched Polysiloxane Grafted Graphene Oxide Hybrid Toward Simultaneously Enhanced Flame Retardancy and Smoke Suppression of Thermoplastic Polyurethane Nanocomposites.” Compos. Part A: Appl. Sci. Manufac., 150 106614 (2021)CrossRef Huang, W, Huang, J, Yu, B, Meng, Y, Cao, X, Zhang, Q, Wu, W, Shi, D, Jiang, T, Li, RK, “Facile Preparation of Phosphorus Containing Hyperbranched Polysiloxane Grafted Graphene Oxide Hybrid Toward Simultaneously Enhanced Flame Retardancy and Smoke Suppression of Thermoplastic Polyurethane Nanocomposites.” Compos. Part A: Appl. Sci. Manufac., 150 106614 (2021)CrossRef
25.
Zurück zum Zitat Awasthi, S, Agarwal, D, “Influence of Cycloaliphatic Compounds on the Properties of Polyurethane Coatings.” J. Coat. Technol. Res., 4 (1) 67–73 (2007)CrossRef Awasthi, S, Agarwal, D, “Influence of Cycloaliphatic Compounds on the Properties of Polyurethane Coatings.” J. Coat. Technol. Res., 4 (1) 67–73 (2007)CrossRef
26.
Zurück zum Zitat Naiker, VE., Mestry, S, Nirgude, T, Gadgeel, A, Mhaske, S, “Recent Developments in Phosphorous-Containing Bio-Based Flame-Retardant (FR) Materials for Coatings: An Attentive Review.” J. Coat. Technol. Res., 20, 113—139 (2023)CrossRef Naiker, VE., Mestry, S, Nirgude, T, Gadgeel, A, Mhaske, S, “Recent Developments in Phosphorous-Containing Bio-Based Flame-Retardant (FR) Materials for Coatings: An Attentive Review.” J. Coat. Technol. Res., 20, 113—139 (2023)CrossRef
27.
Zurück zum Zitat Awad, MA, Saleh, N, Elsawy, M, Salem, SS, El-Wahab, A et al, “Preparation of Polyurethane Coating Formulation Based on Dihydropyridine Derivatives as an Insecticide and Antifungal Additives for Surface Coating Applications.” J. Coat. Technol. Res., 1–13 (2022) Awad, MA, Saleh, N, Elsawy, M, Salem, SS, El-Wahab, A et al, “Preparation of Polyurethane Coating Formulation Based on Dihydropyridine Derivatives as an Insecticide and Antifungal Additives for Surface Coating Applications.” J. Coat. Technol. Res., 1–13 (2022)
28.
Zurück zum Zitat Zhang, J, Zhang, N, Liu, Q, Ren, H, Li, P, Yang, K, “Investigation of Hybrid Materials Based on Polyurethane Modified with Aliphatic Side Chains Combined with Nano-Tio2.”Aus. J. Chem., 71 (1) 47–57 (2017)CrossRef Zhang, J, Zhang, N, Liu, Q, Ren, H, Li, P, Yang, K, “Investigation of Hybrid Materials Based on Polyurethane Modified with Aliphatic Side Chains Combined with Nano-Tio2.”Aus. J. Chem., 71 (1) 47–57 (2017)CrossRef
29.
Zurück zum Zitat Awais, M, Jalil, M, Zulfiqar, U, Husain, S, “A Facile Approach Towards Fabrication of Super Hydrophobic Surface from Functionalized Silica Particles.” In: IOP Conference Series: Materials Science and Engineering, 146 012022 (2016) Awais, M, Jalil, M, Zulfiqar, U, Husain, S, “A Facile Approach Towards Fabrication of Super Hydrophobic Surface from Functionalized Silica Particles.” In: IOP Conference Series: Materials Science and Engineering, 146 012022 (2016)
30.
Zurück zum Zitat Soleimani, E, Taheri, R, “ Synthesis and Surface Modification of Cuo Nanoparticles: Evaluation of Dispersion and Lipophilic Properties.” Nano-Struct. Nano-Objects, 10 167–175 (2017)CrossRef Soleimani, E, Taheri, R, “ Synthesis and Surface Modification of Cuo Nanoparticles: Evaluation of Dispersion and Lipophilic Properties.” Nano-Struct. Nano-Objects, 10 167–175 (2017)CrossRef
31.
Zurück zum Zitat Wang, Z, Liu, F, Han, E, Ke, W, Luo, S, “Effect of ZnO Nanoparticles on Anti-Aging Properties of Polyurethane Coating.” Chin. Sci. Bull., 54 (19) 3464–3472 (2009)CrossRef Wang, Z, Liu, F, Han, E, Ke, W, Luo, S, “Effect of ZnO Nanoparticles on Anti-Aging Properties of Polyurethane Coating.” Chin. Sci. Bull., 54 (19) 3464–3472 (2009)CrossRef
32.
Zurück zum Zitat El Saeed, AM, Abd El-Fattah, M, Azzam, AM, “Synthesis of ZnO Nanoparticles and Studying Its Influence on the Antimicrobial, Anticorrosion and Mechanical Behavior of Polyurethane Composite for Surface Coating.” Dyes and Pigments, 121 282–289 (2015)CrossRef El Saeed, AM, Abd El-Fattah, M, Azzam, AM, “Synthesis of ZnO Nanoparticles and Studying Its Influence on the Antimicrobial, Anticorrosion and Mechanical Behavior of Polyurethane Composite for Surface Coating.” Dyes and Pigments, 121 282–289 (2015)CrossRef
33.
Zurück zum Zitat Bui, TMA, Nguyen, TV, Nguyen, TM, Hoang, TH, Nguyen, TTH, Lai, TH, Tran, TN, Hoang, VH, Le, TL, Dang, TC, et al. “Investigation of Crosslinking, Mechanical Properties and Weathering Stability of Acrylic Polyurethane Coating Reinforced by SiO2 Nanoparticles Issued from Rice Husk Ash.”Mater. Chem. Phys., 241 122445 (2020)CrossRef Bui, TMA, Nguyen, TV, Nguyen, TM, Hoang, TH, Nguyen, TTH, Lai, TH, Tran, TN, Hoang, VH, Le, TL, Dang, TC, et al. “Investigation of Crosslinking, Mechanical Properties and Weathering Stability of Acrylic Polyurethane Coating Reinforced by SiO2 Nanoparticles Issued from Rice Husk Ash.”Mater. Chem. Phys., 241 122445 (2020)CrossRef
34.
Zurück zum Zitat Song, H-J, Zhang, Z-Z, Men, X-H, “The Tribological Behaviors of the Polyurethane Coating Filled with Nano-SiO2 Under Different Lubrication Conditions.” Compos. Part A: Appl. Sci. Manufac., 39 (2) 188–194 (2008)CrossRef Song, H-J, Zhang, Z-Z, Men, X-H, “The Tribological Behaviors of the Polyurethane Coating Filled with Nano-SiO2 Under Different Lubrication Conditions.” Compos. Part A: Appl. Sci. Manufac., 39 (2) 188–194 (2008)CrossRef
35.
Zurück zum Zitat Nguyen, TV, Nguyen, TA, Dao, PH, Nguyen, AH., Do, MT, et al. “Effect of Rutile Titania Dioxide Nanoparticles on the Mechanical Property, Thermal Stability, Weathering Resistance and Antibacterial Property of Styrene Acrylic Polyurethane Coating.” Adv. Natural Sci. Nanosci. Nanotechnol., 7 (4) 045015 (2016)CrossRef Nguyen, TV, Nguyen, TA, Dao, PH, Nguyen, AH., Do, MT, et al. “Effect of Rutile Titania Dioxide Nanoparticles on the Mechanical Property, Thermal Stability, Weathering Resistance and Antibacterial Property of Styrene Acrylic Polyurethane Coating.” Adv. Natural Sci. Nanosci. Nanotechnol., 7 (4) 045015 (2016)CrossRef
36.
Zurück zum Zitat Sabzi, M, Mirabedini, S, Zohuriaan-Mehr, J, Atai, M, “Surface Modification of TiO2 Nano-Particles with Silane Coupling Agent and Investigation of its Effect on the Properties of Polyurethane Composite Coating.” Prog. Org. Coat., 65 (2) 222–228 (2009)CrossRef Sabzi, M, Mirabedini, S, Zohuriaan-Mehr, J, Atai, M, “Surface Modification of TiO2 Nano-Particles with Silane Coupling Agent and Investigation of its Effect on the Properties of Polyurethane Composite Coating.” Prog. Org. Coat., 65 (2) 222–228 (2009)CrossRef
37.
Zurück zum Zitat Liu, S, Wei, X, Lin, S, Guo, M, “Preparation of Aerogel Mg(OH)2 Nanosheets by a Combined Sol-Gel-Hydrothermal Process and its Calcined mgo Towards Enhanced Degradation of Paraoxon Pollutants.” J. Sol-Gel Sci. Technol., 99 (1) 122–131 (2021)CrossRef Liu, S, Wei, X, Lin, S, Guo, M, “Preparation of Aerogel Mg(OH)2 Nanosheets by a Combined Sol-Gel-Hydrothermal Process and its Calcined mgo Towards Enhanced Degradation of Paraoxon Pollutants.” J. Sol-Gel Sci. Technol., 99 (1) 122–131 (2021)CrossRef
38.
Zurück zum Zitat Chen, Y, Zhou, T, Fang, H, Li, S, Yao, Y, He, Y, “A Novel Preparation of Nano-Sized Hexagonal Mg(OH)2.” Proc. Eng., 102 388–394 (2015)CrossRef Chen, Y, Zhou, T, Fang, H, Li, S, Yao, Y, He, Y, “A Novel Preparation of Nano-Sized Hexagonal Mg(OH)2.” Proc. Eng., 102 388–394 (2015)CrossRef
39.
Zurück zum Zitat Ding, Y, Zhang, G, Wu, H, Hai, B, Wang, L, Qian, Y, “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control Over Size, Shape, and Structure via Hydrothermal Synthesis.” Chem. Mater., 13 (2) 435–440 (2001)CrossRef Ding, Y, Zhang, G, Wu, H, Hai, B, Wang, L, Qian, Y, “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control Over Size, Shape, and Structure via Hydrothermal Synthesis.” Chem. Mater., 13 (2) 435–440 (2001)CrossRef
40.
Zurück zum Zitat Feng, S-H, Li, G-H, “Hydrothermal and Solvothermal Syntheses.” In: Modern Inorganic Synthetic Chemistry, pp. 73–104. Elsevier, (2017) Feng, S-H, Li, G-H, “Hydrothermal and Solvothermal Syntheses.” In: Modern Inorganic Synthetic Chemistry, pp. 73–104. Elsevier, (2017)
41.
Zurück zum Zitat Sohrabi-Kashani, L, Yekta, BE, Rezaie, HR, Zolriasatein, A, “Synergistic Effect of Micro-and Nano-TiO2 on Hydrophobic, Mechanical, and Electrical Properties of Hybrid Polyurethane Composites.” J. Materi. Sci. Mater. Electron., 1–20 (2022) Sohrabi-Kashani, L, Yekta, BE, Rezaie, HR, Zolriasatein, A, “Synergistic Effect of Micro-and Nano-TiO2 on Hydrophobic, Mechanical, and Electrical Properties of Hybrid Polyurethane Composites.” J. Materi. Sci. Mater. Electron., 1–20 (2022)
42.
Zurück zum Zitat Seyedmehdi, S, Ebrahimi, M, “Superhydrophobic Modified-Polyurethane Coatings for Bushing of Power Transformers: From Material to Fabrication, Mechanical and Electrical Properties.” Prog. Org. Coat., 123 134–137 (2018)CrossRef Seyedmehdi, S, Ebrahimi, M, “Superhydrophobic Modified-Polyurethane Coatings for Bushing of Power Transformers: From Material to Fabrication, Mechanical and Electrical Properties.” Prog. Org. Coat., 123 134–137 (2018)CrossRef
43.
Zurück zum Zitat Yousefi, S, Ghasemi, B, “Ultrasound-assisted Synthesis of Porous Mg(OH)2 Nanostructures Using Hypersaline Brine.” Micro & Nano Lett., 14 (9) 1019–1023 (2019)CrossRef Yousefi, S, Ghasemi, B, “Ultrasound-assisted Synthesis of Porous Mg(OH)2 Nanostructures Using Hypersaline Brine.” Micro & Nano Lett., 14 (9) 1019–1023 (2019)CrossRef
44.
Zurück zum Zitat Wu, H, Luo, B, Gao, C, Wang, L, Wang, Y, Zhang, Q, “Synthesis and Size Control of Monodisperse Magnesium Hydroxide Nanoparticles by Microemulsion Method.” J. Dispersion Sci. Technol., (2019) Wu, H, Luo, B, Gao, C, Wang, L, Wang, Y, Zhang, Q, “Synthesis and Size Control of Monodisperse Magnesium Hydroxide Nanoparticles by Microemulsion Method.” J. Dispersion Sci. Technol., (2019)
45.
Zurück zum Zitat Erciyes, A, Andac, M, “Synthesis and Characterization of Nano-Sized Magnesium 1, 4-Benzenedicarboxylate Metal Organic Framework via Electrochemical Method.” J. Solid State Chem., 309 122970 (2022)CrossRef Erciyes, A, Andac, M, “Synthesis and Characterization of Nano-Sized Magnesium 1, 4-Benzenedicarboxylate Metal Organic Framework via Electrochemical Method.” J. Solid State Chem., 309 122970 (2022)CrossRef
46.
Zurück zum Zitat Sharma, D, Ledwani, L, Kumar, N, Pervaiz, N, Mehrotra, T, Kumar, R, “Structural and Physicochemical Properties of Rheum Emodi Mediated Mg(OH)2 Nanoparticles and Their Antibacterial and Cytotoxic Potential.” IET Nanobiotechnol., 14 (9) 858–863 (2020)CrossRef Sharma, D, Ledwani, L, Kumar, N, Pervaiz, N, Mehrotra, T, Kumar, R, “Structural and Physicochemical Properties of Rheum Emodi Mediated Mg(OH)2 Nanoparticles and Their Antibacterial and Cytotoxic Potential.” IET Nanobiotechnol., 14 (9) 858–863 (2020)CrossRef
47.
Zurück zum Zitat Yousefi, S, Ghasemi, B, “Mg(OH)2 Nanostructures Using Impure Brine: Optimization of Synthesis Parameters by Taguchi Robust Design and Study of Optical Properties.”Res. Chem. Intermediat., 47 (5) 2029–2047 (2021)CrossRef Yousefi, S, Ghasemi, B, “Mg(OH)2 Nanostructures Using Impure Brine: Optimization of Synthesis Parameters by Taguchi Robust Design and Study of Optical Properties.”Res. Chem. Intermediat., 47 (5) 2029–2047 (2021)CrossRef
48.
Zurück zum Zitat Babar, M, Sharma, A, Kakkar, P, Arora, A, Arora, T, Verma, G, “Correlating Thermal Properties of Polyurethane/clay Nanocomposite Coatings with Processing.” Prog. Org. Coat., 165 106743 (2022)CrossRef Babar, M, Sharma, A, Kakkar, P, Arora, A, Arora, T, Verma, G, “Correlating Thermal Properties of Polyurethane/clay Nanocomposite Coatings with Processing.” Prog. Org. Coat., 165 106743 (2022)CrossRef
49.
Zurück zum Zitat Sharma, A, Babar, M, Kakkar, P, Gahlout, P, Verma, G, “Correlating Mechanical Properties of Polyurethane-Organoclay Nanocomposite Coatings with Processing.” Prog. Org. Coat., 169 106895 (2022)CrossRef Sharma, A, Babar, M, Kakkar, P, Gahlout, P, Verma, G, “Correlating Mechanical Properties of Polyurethane-Organoclay Nanocomposite Coatings with Processing.” Prog. Org. Coat., 169 106895 (2022)CrossRef
50.
Zurück zum Zitat Nayak, N, Huertas, R, Crespo, JG, Portugal, CA, “Surface Modification of Alumina Monolithic Columns with 3-Aminopropyltetraethoxysilane (APTES) for Protein Attachment.”Sep. Purif. Technol., 229 115674 (2019)CrossRef Nayak, N, Huertas, R, Crespo, JG, Portugal, CA, “Surface Modification of Alumina Monolithic Columns with 3-Aminopropyltetraethoxysilane (APTES) for Protein Attachment.”Sep. Purif. Technol., 229 115674 (2019)CrossRef
51.
Zurück zum Zitat Zahir, MH, Rahman, MM, Irshad, K, Rahman, MM, “Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol.” Nanomaterials, 9 (12) 1773 (2019)CrossRef Zahir, MH, Rahman, MM, Irshad, K, Rahman, MM, “Shape-Stabilized Phase Change Materials for Solar Energy Storage: MgO and Mg(OH)2 Mixed with Polyethylene Glycol.” Nanomaterials, 9 (12) 1773 (2019)CrossRef
52.
Zurück zum Zitat Zhang, M, Song, W, Chen, Q, Miao, B, He, W, “One-Pot Synthesis of Magnetic Ni@Mg(OH)2 Core-Shell Nanocomposites as a Recyclable Removal Agent for Heavy Metals”.ACS Appl. Materi. Interfaces, 7 (3) 1533–1540 (2015)CrossRef Zhang, M, Song, W, Chen, Q, Miao, B, He, W, “One-Pot Synthesis of Magnetic Ni@Mg(OH)2 Core-Shell Nanocomposites as a Recyclable Removal Agent for Heavy Metals”.ACS Appl. Materi. Interfaces, 7 (3) 1533–1540 (2015)CrossRef
53.
Zurück zum Zitat Vafaeifard, M, Ibrahim, S, Wong, KT, Pasbakhsh, P, Pichiah, S, Choi, J, Yoon, Y, Jang, M, “Novel Self-Assembled 3d Flower-Like Magnesium Hydroxide Coated Granular Polyurethane: Implication of its Potential Application for the Removal of Heavy Metals.”J. Clean. Prod., 216 495–503 (2019)CrossRef Vafaeifard, M, Ibrahim, S, Wong, KT, Pasbakhsh, P, Pichiah, S, Choi, J, Yoon, Y, Jang, M, “Novel Self-Assembled 3d Flower-Like Magnesium Hydroxide Coated Granular Polyurethane: Implication of its Potential Application for the Removal of Heavy Metals.”J. Clean. Prod., 216 495–503 (2019)CrossRef
54.
Zurück zum Zitat Akindoyo, JO, Beg, M, Ghazali, S, Islam, M, Jeyaratnam, N, Yuvaraj, A, “Polyurethane Types, Synthesis and Applications-A Review.” RSC Adv., 6 (115) 114453–114482 (2016)CrossRef Akindoyo, JO, Beg, M, Ghazali, S, Islam, M, Jeyaratnam, N, Yuvaraj, A, “Polyurethane Types, Synthesis and Applications-A Review.” RSC Adv., 6 (115) 114453–114482 (2016)CrossRef
55.
Zurück zum Zitat Pielichowski, K, Słotwińska, D, Dziwiński, E, “Segmented MDI/HMDI-Based Polyurethanes with Lowered Flammability.” J. Appl. Polym. Sci., 91 (5) 3214–3224 (2004)CrossRef Pielichowski, K, Słotwińska, D, Dziwiński, E, “Segmented MDI/HMDI-Based Polyurethanes with Lowered Flammability.” J. Appl. Polym. Sci., 91 (5) 3214–3224 (2004)CrossRef
56.
Zurück zum Zitat Barendregt, R, Van Den Berg, P, “The Degradation of Polyurethane.” Thermochimica Acta, 38 (2) 181–195 (1980)CrossRef Barendregt, R, Van Den Berg, P, “The Degradation of Polyurethane.” Thermochimica Acta, 38 (2) 181–195 (1980)CrossRef
57.
Zurück zum Zitat Semsarzadeh, M, Navarchian, A, “Effects of NCO/OH Ratio and Catalyst Concentration on Structure, Thermal Stability, and Crosslink Density of Poly (Urethane-Isocyanurate).” J. Appl. Polym. Sci., 90 (4) 963–972 (2003)CrossRef Semsarzadeh, M, Navarchian, A, “Effects of NCO/OH Ratio and Catalyst Concentration on Structure, Thermal Stability, and Crosslink Density of Poly (Urethane-Isocyanurate).” J. Appl. Polym. Sci., 90 (4) 963–972 (2003)CrossRef
58.
Zurück zum Zitat Shamsi, R, Abdouss, M, Sadeghi, GMM, Taromi, FA, “Synthesis and Characterization of Novel Polyurethanes Based on Aminolysis of Poly (Ethylene Terephthalate) Wastes, and Evaluation of Their Thermal and Mechanical Properties.” Polym. Int., 58 (1) 22–30 (2009)CrossRef Shamsi, R, Abdouss, M, Sadeghi, GMM, Taromi, FA, “Synthesis and Characterization of Novel Polyurethanes Based on Aminolysis of Poly (Ethylene Terephthalate) Wastes, and Evaluation of Their Thermal and Mechanical Properties.” Polym. Int., 58 (1) 22–30 (2009)CrossRef
59.
Zurück zum Zitat Pegoretti, A, Dorigato, A, Brugnara, M, Penati, A, “Contact angle Measurements as a Tool to Investigate the Filler-Matrix Interactions in Polyurethane-Clay Nanocomposites from Blocked Prepolymer.” Eur. Polym. J., 44 (6) 1662–1672 (2008)CrossRef Pegoretti, A, Dorigato, A, Brugnara, M, Penati, A, “Contact angle Measurements as a Tool to Investigate the Filler-Matrix Interactions in Polyurethane-Clay Nanocomposites from Blocked Prepolymer.” Eur. Polym. J., 44 (6) 1662–1672 (2008)CrossRef
60.
Zurück zum Zitat Momen, G, Farzaneh, M, “Survey of Micro/Nano Filler Use to Improve Silicone Rubber for Outdoor Insulators.” Rev. Adv. Mater. Sci, 27 (1) 1–13 (2011) Momen, G, Farzaneh, M, “Survey of Micro/Nano Filler Use to Improve Silicone Rubber for Outdoor Insulators.” Rev. Adv. Mater. Sci, 27 (1) 1–13 (2011)
61.
Zurück zum Zitat Eshaghi, A, Aghaei, AA, “Transparent Hydrophobic Micro-Nano Silica-Silica Nano-Composite Thin Film with Environmental Durability.” Materi. Chem. Phys., 227 318–323 (2019)CrossRef Eshaghi, A, Aghaei, AA, “Transparent Hydrophobic Micro-Nano Silica-Silica Nano-Composite Thin Film with Environmental Durability.” Materi. Chem. Phys., 227 318–323 (2019)CrossRef
62.
Zurück zum Zitat Hejazi, I, Seyfi, J, Sadeghi, GMM, Jafari, SH, Khonakdar, HA, Drechsler, A, Davachi, SM, “Investigating the Interrelationship of Superhydrophobicity with Surface Morphology, Topography and Chemical Composition in Spray-Coated Polyurethane/Silica Nanocomposites.” Polymer, 128 108–118 (2017)CrossRef Hejazi, I, Seyfi, J, Sadeghi, GMM, Jafari, SH, Khonakdar, HA, Drechsler, A, Davachi, SM, “Investigating the Interrelationship of Superhydrophobicity with Surface Morphology, Topography and Chemical Composition in Spray-Coated Polyurethane/Silica Nanocomposites.” Polymer, 128 108–118 (2017)CrossRef
63.
Zurück zum Zitat Villegas, M, Zhang, Y, Abu Jarad, N, Soleymani, L, Didar, TF, “Liquid-Infused Surfaces: A Review of Theory, Design, and Applications.” ACS Nano, 13 (8) 8517–8536 (2019)CrossRef Villegas, M, Zhang, Y, Abu Jarad, N, Soleymani, L, Didar, TF, “Liquid-Infused Surfaces: A Review of Theory, Design, and Applications.” ACS Nano, 13 (8) 8517–8536 (2019)CrossRef
64.
Zurück zum Zitat Verma, G, Kaushik, A, Ghosh, AK, “Nano-Interfaces Between Clay Platelets and Polyurethane Hard Segments in Spray Coated Automotive Nanocomposites.” Prog. Org. Coat., 99 282–294 (2016)CrossRef Verma, G, Kaushik, A, Ghosh, AK, “Nano-Interfaces Between Clay Platelets and Polyurethane Hard Segments in Spray Coated Automotive Nanocomposites.” Prog. Org. Coat., 99 282–294 (2016)CrossRef
65.
Zurück zum Zitat Przybyszewski, B, Boczkowska, A, Kozera, R, Mora, J, Garcia, P, Aguero, A, Borras, A, “Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings.” Coatings, 9 (12) 811 (2019)CrossRef Przybyszewski, B, Boczkowska, A, Kozera, R, Mora, J, Garcia, P, Aguero, A, Borras, A, “Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings.” Coatings, 9 (12) 811 (2019)CrossRef
66.
Zurück zum Zitat Simpson, JT, Hunte, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Progr. Phys., 78 (8) 086501 (2015)CrossRef Simpson, JT, Hunte, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Progr. Phys., 78 (8) 086501 (2015)CrossRef
Metadaten
Titel
Impact of various Mg(OH) morphologies on hydrophobicity, mechanical, and physical properties of polyurethane nanocomposite
verfasst von
Zahra Rajabimashhadi
Rahim Naghizadeh
Ashkan Zolriasatein
Sonia Bagheri
Claudio Mele
Carola Esposito Corcione
Publikationsdatum
05.09.2023
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 6/2023
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-023-00797-0

Weitere Artikel der Ausgabe 6/2023

Journal of Coatings Technology and Research 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.