Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Original Article | Ausgabe 11/2015

Environmental Earth Sciences 11/2015

Impacts of devegetation on the temporal evolution of soil saturated hydraulic conductivity in a vegetated sand dune area

Zeitschrift:
Environmental Earth Sciences > Ausgabe 11/2015
Autoren:
Tiejun Wang, Erkan Istanbulluoglu, David Wedin, Paul Hanson

Abstract

Soil saturated hydraulic conductivity (K S ) is partly affected by vegetation activities, which can either increase K S by enhancing macropore flow or reduce K S by clogging pore space. Despite the complex interactions of K S with vegetation, the impact of devegetation on K S has not been adequately addressed, particularly in regions that are prone to drought-induced devegetation. In this study, the impacts of devegetation on K S in a native grassland-stabilized sand dune area were investigated by artificially controlling surface vegetation at an experimental site in the Nebraska Sand Hills. The experimental results revealed that the temporal evolution of K S at the site was mainly affected by the erosion processes triggered by devegetation. Over a short-term (about 1 year), the impact of devegetation on K S was negligible, owing to that the existence of dead root systems prevented erosion processes. By comparison, the long-term impact of devegetation on K S emerged when devegetation-induced erosion processes exposed deeper soil layers with higher K S . Particularly, the dunetop locations that experienced higher erosion rates had larger temporal changes in K S . Thus, the impacts of devegetation on K S mainly depended on two factors (i.e., time and topographic locations) that were related to erosion processes in this native grassland-stabilized sand dune area. To further investigate the ecohydrological implications of the temporal change in K S , a newly developed ecohydrological model was also employed, and the simulation results showed that the impacts of changes in K S on water balance components and biomass production were non-negligible and highly nonlinear. In spite of previous studies, the findings presented here demonstrate the close tie between near-surface hydrology and land surface evolution processes controlled by vegetation in sand dune areas, and highlight the importance of coupling eco-hydro-geomorphic interactions in the context of climate change.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2015

Environmental Earth Sciences 11/2015 Zur Ausgabe