Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 2/2020

16.12.2019 | Research Article - Mechanical Engineering

Impacts of Variable Porosity and Variable Permeability on the Thermal Augmentation of Cu–H2O Nanofluid-Drenched Porous Trapezoidal Enclosure Considering Thermal Nonequilibrium Model

verfasst von: Sheikha M. Al-Weheibi, M. M. Rahman, M. Z. Saghir

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our present work studies the impacts of variable porosity and variable permeability on the transient buoyancy-induced heat transmission flow of Cu–H2O nanofluid through a holey medium (glass bead, aluminum foam and sandstone) inside a right-angle trapezoidal cavity considering thermal nonequilibrium states amid the solid matrix and the nanofluid. We carried out numerical simulation by utilizing the Galerkin finite element method. We explored the impacts of the different model parameters on the thermal characteristics in details. The obtained numerical results confirm that the critical Rayleigh number, \( {\text{Ra}}_{\text{c}} \), determining the thermal nonequilibrium state increased by increasing the Nield number, whereas it is found to be diminished with the increase in the diameter of the beads constructing the porous medium as well as with the porosity parameter. Additionally, the average Nusselt number in a porous medium having variable porosity is found to be higher compared to the medium of the uniform porosity. Increasing the variable porosity can significantly (more than 500%) increase the rate of heat transfer of the nanofluid in a porous medium. The higher porosity of the medium enhances the thermal state of a system to make it thermal nonequilibrium from the thermal equilibrium state. Furthermore, nanofluid flow in glass bead porous medium provides maximum (5% and 14% increase compared to the sandstone and aluminum foam, respectively) heat transmission rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rahman, M.M.; Rosca, A.V.; Pop, I.: Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow 25(2), 299–319 (2015)MathSciNetMATH Rahman, M.M.; Rosca, A.V.; Pop, I.: Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. Int. J. Numer. Methods Heat Fluid Flow 25(2), 299–319 (2015)MathSciNetMATH
2.
Zurück zum Zitat Rahman, M.M.; Al-Rashdi, M.H.; Pop, I.: Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux. Nucl. Eng. Des. 297, 95–103 (2016) Rahman, M.M.; Al-Rashdi, M.H.; Pop, I.: Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux. Nucl. Eng. Des. 297, 95–103 (2016)
3.
Zurück zum Zitat Uddin, M.J.; Alam, M.S.; Rahman, M.M.: Natural convective heat transfer flow of nanofluids inside a quarter-circular enclosure using nonhomogeneous dynamic model. Arab. J. Sci. Eng. 42(5), 1883–1901 (2017)MathSciNetMATH Uddin, M.J.; Alam, M.S.; Rahman, M.M.: Natural convective heat transfer flow of nanofluids inside a quarter-circular enclosure using nonhomogeneous dynamic model. Arab. J. Sci. Eng. 42(5), 1883–1901 (2017)MathSciNetMATH
4.
Zurück zum Zitat Uddin, M.J.; Alam, M.S.; Al-Salti, N.; Rahman, M.M.: Investigations of natural convection heat transfer in nanofluids filled horizontal semicircular-annulus using nonhomogeneous dynamic model. Am. J. Heat Mass Transf. 3(6), 425–452 (2016) Uddin, M.J.; Alam, M.S.; Al-Salti, N.; Rahman, M.M.: Investigations of natural convection heat transfer in nanofluids filled horizontal semicircular-annulus using nonhomogeneous dynamic model. Am. J. Heat Mass Transf. 3(6), 425–452 (2016)
5.
Zurück zum Zitat Al-Weheibi, S.M.; Rahman, M.M.; Alam, M.S.; Vajravelu, K.: Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles. Int. J. Mech. Sci. 131, 599–612 (2017) Al-Weheibi, S.M.; Rahman, M.M.; Alam, M.S.; Vajravelu, K.: Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles. Int. J. Mech. Sci. 131, 599–612 (2017)
6.
Zurück zum Zitat Chen, H.; Witharana, S.; Jina, Y.; Kimd, C.; Dinga, Y.: Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on Rheolog. Particuology 7(2), 151–157 (2009) Chen, H.; Witharana, S.; Jina, Y.; Kimd, C.; Dinga, Y.: Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on Rheolog. Particuology 7(2), 151–157 (2009)
7.
Zurück zum Zitat Mansour, M.A.; Ahmed, S.E.; Rashad, A.M.: MHD natural convection in a square enclosure using nanofluid with the influence of thermal boundary conditions. J. Appl. Fluid Mech. 9(5), 2515–2525 (2016) Mansour, M.A.; Ahmed, S.E.; Rashad, A.M.: MHD natural convection in a square enclosure using nanofluid with the influence of thermal boundary conditions. J. Appl. Fluid Mech. 9(5), 2515–2525 (2016)
8.
Zurück zum Zitat Rashad, A.M.; Sivasankaran, S.; Mansour, M.A.; Bhuvaneswari, M.: Magneto-convection of nanofluids in a lid-driven trapezoidal cavity with internal heat generation and discrete heating. Numer. Heat Transf. Part A Appl. 71(12), 1223–1234 (2017) Rashad, A.M.; Sivasankaran, S.; Mansour, M.A.; Bhuvaneswari, M.: Magneto-convection of nanofluids in a lid-driven trapezoidal cavity with internal heat generation and discrete heating. Numer. Heat Transf. Part A Appl. 71(12), 1223–1234 (2017)
9.
Zurück zum Zitat Cheng, P.: Heat transfer in geothermal systems. Adv. Heat Transf. 14, 1–105 (1979) Cheng, P.: Heat transfer in geothermal systems. Adv. Heat Transf. 14, 1–105 (1979)
10.
Zurück zum Zitat Nield, D.A.; Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)MATH Nield, D.A.; Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)MATH
11.
Zurück zum Zitat Rashidi, M.M.; Basiriparsa, A.; Shamekhi, L.; Momoniat, E.: Entropy generation analysis of the revised Cheng–Minkowycz problem for natural convective boundary layer flow of nanofluid in a porous medium. Therm. Sci. 19, 169–178 (2015) Rashidi, M.M.; Basiriparsa, A.; Shamekhi, L.; Momoniat, E.: Entropy generation analysis of the revised Cheng–Minkowycz problem for natural convective boundary layer flow of nanofluid in a porous medium. Therm. Sci. 19, 169–178 (2015)
12.
Zurück zum Zitat Rashidi, M.M.; Erfani, E.: The modified differential transforms method for investigating nano boundary-layers over stretching surfaces. Int. J. Numer. Methods Heat Fluid Flow 21, 864–883 (2011)MathSciNet Rashidi, M.M.; Erfani, E.: The modified differential transforms method for investigating nano boundary-layers over stretching surfaces. Int. J. Numer. Methods Heat Fluid Flow 21, 864–883 (2011)MathSciNet
13.
Zurück zum Zitat Rashidi, M.M.; Momoniat, E.; Ferdows, M.; Basiriparsa, A.: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media. Math. Probl. Eng., Article ID 239082 (2014) Rashidi, M.M.; Momoniat, E.; Ferdows, M.; Basiriparsa, A.: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media. Math. Probl. Eng., Article ID 239082 (2014)
14.
Zurück zum Zitat Ingham, D.B.; Pop, I. (eds.): Transport Phenomena in Porous Media, vol. 3. Elsevier, Oxford (2005) Ingham, D.B.; Pop, I. (eds.): Transport Phenomena in Porous Media, vol. 3. Elsevier, Oxford (2005)
15.
Zurück zum Zitat Vafai, K.: Hand book of Porous Media, 2nd edn. Taylor & Francis, New York (2005) Vafai, K.: Hand book of Porous Media, 2nd edn. Taylor & Francis, New York (2005)
16.
Zurück zum Zitat Vafai, K. (ed.): Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010) Vafai, K. (ed.): Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Tokyo (2010)
17.
Zurück zum Zitat Vadasz, P. (ed.): Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microelectronics to Nanotechnology, vol. 22. Springer, New York (2008) Vadasz, P. (ed.): Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microelectronics to Nanotechnology, vol. 22. Springer, New York (2008)
18.
Zurück zum Zitat Al-Amiri, A.M.: Natural convection in porous enclosures: the application of the two-energy equation model. Numer. Heat Transf. Part A Appl. 41(8), 817–834 (2002) Al-Amiri, A.M.: Natural convection in porous enclosures: the application of the two-energy equation model. Numer. Heat Transf. Part A Appl. 41(8), 817–834 (2002)
19.
Zurück zum Zitat Baytas, A.C.; Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41(9), 861–870 (2002) Baytas, A.C.; Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41(9), 861–870 (2002)
20.
Zurück zum Zitat Baytas, A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase, non-Darcy porous medium. Int. J. Energy Res. 27(10), 975–988 (2003) Baytas, A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase, non-Darcy porous medium. Int. J. Energy Res. 27(10), 975–988 (2003)
21.
Zurück zum Zitat Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsi, L.; Chamkha, A.J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017) Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsi, L.; Chamkha, A.J.; Wongwises, S.; Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)
22.
Zurück zum Zitat Sheikholeslami, M.; Ganji, D.D.: Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source. Chem. Phys. Lett. 667, 307–316 (2017) Sheikholeslami, M.; Ganji, D.D.: Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source. Chem. Phys. Lett. 667, 307–316 (2017)
23.
Zurück zum Zitat Sheikholeslami, M.; Nimafar, M.; Ganji, D.D.; Pouyandehmehr, M.: CuO–H2O nanofluid hydrothermal analysis in a complex shaped cavity. Int. J. Hydrog. Energy 41(40), 17837–17845 (2016) Sheikholeslami, M.; Nimafar, M.; Ganji, D.D.; Pouyandehmehr, M.: CuO–H2O nanofluid hydrothermal analysis in a complex shaped cavity. Int. J. Hydrog. Energy 41(40), 17837–17845 (2016)
24.
Zurück zum Zitat Beukema, K.J.; Bruin, S.; Schenk, J.: Three-dimensional natural convection in a confined porous medium with internal heat generation. Int. J. Heat Mass Transf. 26(3), 451–458 (1983)MATH Beukema, K.J.; Bruin, S.; Schenk, J.: Three-dimensional natural convection in a confined porous medium with internal heat generation. Int. J. Heat Mass Transf. 26(3), 451–458 (1983)MATH
25.
Zurück zum Zitat Haajizadeh, M.; Ozguc, A.F.; Tien, C.L.: Natural convection in a vertical porous enclosure with internal heat generation. Int. J. Heat Mass Transf. 27(10), 1893–1902 (1984)MATH Haajizadeh, M.; Ozguc, A.F.; Tien, C.L.: Natural convection in a vertical porous enclosure with internal heat generation. Int. J. Heat Mass Transf. 27(10), 1893–1902 (1984)MATH
26.
Zurück zum Zitat Kim, G.B.; Hyun, J.M.: Buoyant convection of a power-law fluid in an enclosure filled with heat-generating porous media. Numer. Heat Transf. Part A Appl. 45(6), 569–582 (2004) Kim, G.B.; Hyun, J.M.: Buoyant convection of a power-law fluid in an enclosure filled with heat-generating porous media. Numer. Heat Transf. Part A Appl. 45(6), 569–582 (2004)
27.
Zurück zum Zitat Prasad, V.: Thermal convection in a rectangular cavity filled with a heat-generating, Darcy porous medium. J. Heat Transf. 109(3), 697–703 (1987) Prasad, V.: Thermal convection in a rectangular cavity filled with a heat-generating, Darcy porous medium. J. Heat Transf. 109(3), 697–703 (1987)
28.
Zurück zum Zitat Wu, F.; Wang, G.; Zhou, W.: Natural convection in a cavity filled with porous medium with partially thermal active sidewalls under local thermal nonequilibrium conditions. J. Porous Media 17(11), 983–997 (2014) Wu, F.; Wang, G.; Zhou, W.: Natural convection in a cavity filled with porous medium with partially thermal active sidewalls under local thermal nonequilibrium conditions. J. Porous Media 17(11), 983–997 (2014)
29.
Zurück zum Zitat Wu, F.; Wang, G.; Zhou, W.: A thermal nonequilibrium approach to natural convection in a square enclosure due to the partially cooled sidewalls of the enclosure. Numer. Heat Transf. Part A Appl. 67(7), 771–790 (2015) Wu, F.; Wang, G.; Zhou, W.: A thermal nonequilibrium approach to natural convection in a square enclosure due to the partially cooled sidewalls of the enclosure. Numer. Heat Transf. Part A Appl. 67(7), 771–790 (2015)
30.
Zurück zum Zitat Mohan, C.G.; Satheesh, A.: The numerical simulation of double-diffusive mixed convection flow in a lid-driven porous cavity with magnetohydrodynamic effect. Arab. J. Sci. Eng. 41(5), 1867–1882 (2016) Mohan, C.G.; Satheesh, A.: The numerical simulation of double-diffusive mixed convection flow in a lid-driven porous cavity with magnetohydrodynamic effect. Arab. J. Sci. Eng. 41(5), 1867–1882 (2016)
31.
Zurück zum Zitat Rashad, A.M.; Gorla, R.S.R.; Mansour, M.A.; Ahmed, S.E.: Magnetohydrodynamic effect on natural convection in a cavity filled with a porous medium saturated with nanofluid. J. Porous Media 20(4), 363–379 (2017) Rashad, A.M.; Gorla, R.S.R.; Mansour, M.A.; Ahmed, S.E.: Magnetohydrodynamic effect on natural convection in a cavity filled with a porous medium saturated with nanofluid. J. Porous Media 20(4), 363–379 (2017)
32.
Zurück zum Zitat Rashad, A.M.; Rashidi, M.M.; Lorenzini, G.; Ahmed, S.E.; Aly, A.M.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int. J. Heat Mass Transf. 104, 878–889 (2017) Rashad, A.M.; Rashidi, M.M.; Lorenzini, G.; Ahmed, S.E.; Aly, A.M.: Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int. J. Heat Mass Transf. 104, 878–889 (2017)
33.
Zurück zum Zitat Chamkha, A.J.; Rashad, A.M.; Armaghani, T.; Mansour, M.A.: Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J. Therm. Anal. Calorim. 132(2), 1291–1306 (2018) Chamkha, A.J.; Rashad, A.M.; Armaghani, T.; Mansour, M.A.: Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J. Therm. Anal. Calorim. 132(2), 1291–1306 (2018)
34.
Zurück zum Zitat Rashad, A.M.; Armaghani, T.; Chamkha, A.J.; Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018) Rashad, A.M.; Armaghani, T.; Chamkha, A.J.; Mansour, M.A.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)
35.
Zurück zum Zitat Bejan, A.: Convective Heat Transfer in Porous Media. Handbook of Single-Phase Convective Heat Transfer. Chapter 16. Wiley, New York (1987) Bejan, A.: Convective Heat Transfer in Porous Media. Handbook of Single-Phase Convective Heat Transfer. Chapter 16. Wiley, New York (1987)
36.
Zurück zum Zitat Nield, D.A.: Modeling fluid flow in saturated porous media and at interfaces. In Transport Phenomena in Porous Media II, pp. 1–19 (2002) Nield, D.A.: Modeling fluid flow in saturated porous media and at interfaces. In Transport Phenomena in Porous Media II, pp. 1–19 (2002)
37.
Zurück zum Zitat Lage, J.L.; Weinert, A.K.; Price, D.C.; Weber, R.M.: Numerical study of a low permeability microporous heat sink for cooling phased-array radar systems. Int. J. Heat Mass Transf. 39(17), 3633–3647 (1996) Lage, J.L.; Weinert, A.K.; Price, D.C.; Weber, R.M.: Numerical study of a low permeability microporous heat sink for cooling phased-array radar systems. Int. J. Heat Mass Transf. 39(17), 3633–3647 (1996)
38.
Zurück zum Zitat Kim, S.J.; Kim, D.; Lee, D.Y.: On the local thermal equilibrium in microchannel heat sinks. Int. J. Heat Mass Transf. 43(10), 1735–1748 (2000)MATH Kim, S.J.; Kim, D.; Lee, D.Y.: On the local thermal equilibrium in microchannel heat sinks. Int. J. Heat Mass Transf. 43(10), 1735–1748 (2000)MATH
39.
Zurück zum Zitat Jiang, P.X.; Fan, M.H.; Si, G.S.; Ren, Z.P.: Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int. J. Heat Mass Transf. 44(5), 1039–1051 (2001) Jiang, P.X.; Fan, M.H.; Si, G.S.; Ren, Z.P.: Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int. J. Heat Mass Transf. 44(5), 1039–1051 (2001)
40.
Zurück zum Zitat Fichot, F.; Duval, F.; Tregoures, N.; Béchaud, C.; Quintard, M.: The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Des. 236(19–21), 2144–2163 (2006) Fichot, F.; Duval, F.; Tregoures, N.; Béchaud, C.; Quintard, M.: The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Des. 236(19–21), 2144–2163 (2006)
41.
Zurück zum Zitat Damm, D.L.; Fedorov, A.G.: Local thermal non-equilibrium effects in porous electrodes of the hydrogen-fueled SOFC. J. Power Sources 159(2), 1153–1157 (2006) Damm, D.L.; Fedorov, A.G.: Local thermal non-equilibrium effects in porous electrodes of the hydrogen-fueled SOFC. J. Power Sources 159(2), 1153–1157 (2006)
42.
Zurück zum Zitat Deléglise, M.; Binétruy, C.; Castaing, P.; Krawczak, P.: Use of non local equilibrium theory to predict transient temperature during non-isothermal resin flow in a fibrous medium. Int. J. Heat Mass Transf. 50(11–12), 2317–2324 (2007)MATH Deléglise, M.; Binétruy, C.; Castaing, P.; Krawczak, P.: Use of non local equilibrium theory to predict transient temperature during non-isothermal resin flow in a fibrous medium. Int. J. Heat Mass Transf. 50(11–12), 2317–2324 (2007)MATH
43.
Zurück zum Zitat Hayes, A.M.; Khan, J.A.; Shaaban, A.H.; Spearing, I.G.: The thermal modeling of a matrix heat exchanger using a porous medium and the thermal non-equilibrium model. Int. J. Therm. Sci. 47(10), 1306–1315 (2008) Hayes, A.M.; Khan, J.A.; Shaaban, A.H.; Spearing, I.G.: The thermal modeling of a matrix heat exchanger using a porous medium and the thermal non-equilibrium model. Int. J. Therm. Sci. 47(10), 1306–1315 (2008)
44.
Zurück zum Zitat Lefebvre, L.P.; Banhart, J.; Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008) Lefebvre, L.P.; Banhart, J.; Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)
45.
Zurück zum Zitat Salas, K.I.; Waas, A.M.: Convective heat transfer in open cell metal foams. J. Heat Transf. 129(9), 1217–1229 (2007) Salas, K.I.; Waas, A.M.: Convective heat transfer in open cell metal foams. J. Heat Transf. 129(9), 1217–1229 (2007)
46.
Zurück zum Zitat Ye, C.; Li, B.; Sun, W.: Quasi-steady-state and steady-state models for heat and moisture transport in textile assemblies. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2122), 2875–2896 (2010)MathSciNetMATH Ye, C.; Li, B.; Sun, W.: Quasi-steady-state and steady-state models for heat and moisture transport in textile assemblies. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2122), 2875–2896 (2010)MathSciNetMATH
47.
Zurück zum Zitat Straughan, B.: Tipping points in Cattaneo–Christov thermohaline convection. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2125), 7–18 (2010)MathSciNetMATH Straughan, B.: Tipping points in Cattaneo–Christov thermohaline convection. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2125), 7–18 (2010)MathSciNetMATH
48.
Zurück zum Zitat Haji-Sheikh, A.; Minkowycz, W.J.: Heat transfer analysis under local thermal non-equilibrium conditions. In: Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Dordrecht, pp. 39–62 (2008)‏ Haji-Sheikh, A.; Minkowycz, W.J.: Heat transfer analysis under local thermal non-equilibrium conditions. In: Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Dordrecht, pp. 39–62 (2008)‏
49.
Zurück zum Zitat Hossain, M.A.; Wilson, M.: Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation. Int. J. Therm. Sci. 41(5), 447–454 (2002) Hossain, M.A.; Wilson, M.: Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation. Int. J. Therm. Sci. 41(5), 447–454 (2002)
50.
Zurück zum Zitat Bourantas, G.C.; Skouras, E.D.; Loukopoulos, V.C.; Burganos, V.N.: Heat transfer and natural convection of nanofluids in porous media. Eur. J. Mech. B Fluids 43, 45–56 (2014)MathSciNetMATH Bourantas, G.C.; Skouras, E.D.; Loukopoulos, V.C.; Burganos, V.N.: Heat transfer and natural convection of nanofluids in porous media. Eur. J. Mech. B Fluids 43, 45–56 (2014)MathSciNetMATH
51.
Zurück zum Zitat Wu, F.; Zhou, W.; Ma, X.: Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 85, 756–771 (2015) Wu, F.; Zhou, W.; Ma, X.: Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 85, 756–771 (2015)
52.
Zurück zum Zitat Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015) Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015)
53.
Zurück zum Zitat Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)MATH Tiwari, R.K.; Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)MATH
54.
Zurück zum Zitat Sheikholeslami, M.; Shehzad, S.A.: Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int. J. Heat Mass Transf. 120, 1200–1212 (2018) Sheikholeslami, M.; Shehzad, S.A.: Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int. J. Heat Mass Transf. 120, 1200–1212 (2018)
55.
Zurück zum Zitat Mehryan, S.A.M.; Izadi, M.; Sheremet, M.A.: Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model. J. Mol. Liq. 250, 353–368 (2018) Mehryan, S.A.M.; Izadi, M.; Sheremet, M.A.: Analysis of conjugate natural convection within a porous square enclosure occupied with micropolar nanofluid using local thermal non-equilibrium model. J. Mol. Liq. 250, 353–368 (2018)
56.
Zurück zum Zitat Al-Weheibi, S.M.; Rahman, M.M.: Convective heat transmission inside a porous trapezoidal enclosure occupied by nanofluids: local thermal nonequilibrium conditions for a porous medium. Ital. J. Eng. Sci. Tecn. Ital. 61+1(2), 102–114 (2018) Al-Weheibi, S.M.; Rahman, M.M.: Convective heat transmission inside a porous trapezoidal enclosure occupied by nanofluids: local thermal nonequilibrium conditions for a porous medium. Ital. J. Eng. Sci. Tecn. Ital. 61+1(2), 102–114 (2018)
57.
Zurück zum Zitat David, E.; Lauriat, G.; Cheng, P.: Natural convection in rectangular cavities filled with variable porosity media. In: 25th National Heat Transfer Conference, ASME, vol. 1, pp. 605–612 (1988) David, E.; Lauriat, G.; Cheng, P.: Natural convection in rectangular cavities filled with variable porosity media. In: 25th National Heat Transfer Conference, ASME, vol. 1, pp. 605–612 (1988)
58.
Zurück zum Zitat Marcondes, F.; Medeiros, J.M.; Gurgel, J.M.: Numerical analysis of natural convection in cavities with variable porosity. Numer. Heat Transf. Part A 40(4), 403–420 (2001) Marcondes, F.; Medeiros, J.M.; Gurgel, J.M.: Numerical analysis of natural convection in cavities with variable porosity. Numer. Heat Transf. Part A 40(4), 403–420 (2001)
59.
Zurück zum Zitat Mohammadein, A.A.; El-Shaer, N.A.: Influence of variable permeability on combined free and forced convection flow past a semi-infinite vertical plate in a saturated porous medium. Heat Mass Transf. 40, 341–346 (2004) Mohammadein, A.A.; El-Shaer, N.A.: Influence of variable permeability on combined free and forced convection flow past a semi-infinite vertical plate in a saturated porous medium. Heat Mass Transf. 40, 341–346 (2004)
60.
Zurück zum Zitat Pal, D.; Shivakumara, I.S.: Mixed convection heat transfer from a vertical heated plate embedded in a sparsely packed porous medium. Appl. Mech. Eng. 11(4), 929–939 (2006)MATH Pal, D.; Shivakumara, I.S.: Mixed convection heat transfer from a vertical heated plate embedded in a sparsely packed porous medium. Appl. Mech. Eng. 11(4), 929–939 (2006)MATH
61.
Zurück zum Zitat Abelman, S.; Parsa, A.B.; Sayehvand, H.O.: Nanofluid flow and heat transfer in a Brinkman porous channel with variable porosity. Quaest. Math. 41(4), 449–467 (2018)MathSciNetMATH Abelman, S.; Parsa, A.B.; Sayehvand, H.O.: Nanofluid flow and heat transfer in a Brinkman porous channel with variable porosity. Quaest. Math. 41(4), 449–467 (2018)MathSciNetMATH
62.
Zurück zum Zitat Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1(1), 27 (1949)MATH Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1(1), 27 (1949)MATH
63.
Zurück zum Zitat Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Flow Turbul. Combust. 1(1), 81 (1949) Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Flow Turbul. Combust. 1(1), 81 (1949)
64.
Zurück zum Zitat Ochoa-Tapia, J.A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transf. 38(14), 2647–2655 (1995)MATH Ochoa-Tapia, J.A.; Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transf. 38(14), 2647–2655 (1995)MATH
65.
Zurück zum Zitat Chandrasekhara, B.C.; Vortmeyer, D.: Flow model for velocity distribution in fixed porous beds under isothermal conditions. Wärme-und Stoffübertragung 12(2), 105–111 (1979) Chandrasekhara, B.C.; Vortmeyer, D.: Flow model for velocity distribution in fixed porous beds under isothermal conditions. Wärme-und Stoffübertragung 12(2), 105–111 (1979)
66.
Zurück zum Zitat Hsu, C.T.; Cheng, P.: Closure schemes of the macroscopic energy equation for convective heat transfer in porous media. Int. Commun. Heat Mass Transf. 15(5), 689–703 (1988) Hsu, C.T.; Cheng, P.: Closure schemes of the macroscopic energy equation for convective heat transfer in porous media. Int. Commun. Heat Mass Transf. 15(5), 689–703 (1988)
67.
Zurück zum Zitat Ergun, S.: Fluid flow through packed columns. Chem. Eng. Sci. 48(2), 89–94 (1952) Ergun, S.: Fluid flow through packed columns. Chem. Eng. Sci. 48(2), 89–94 (1952)
68.
Zurück zum Zitat Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571 (1952) Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571 (1952)
69.
Zurück zum Zitat Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. I, II. Clarendon Press, Oxford (1873)MATH Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. I, II. Clarendon Press, Oxford (1873)MATH
70.
Zurück zum Zitat Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5), 1326–1336 (2008) Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5), 1326–1336 (2008)
71.
Zurück zum Zitat Al-Kalbani, K.S.; Alam, M.S.; Rahman, M.M.: Finite element analysis of unsteady natural convective heat transfer and fluid flow of nanofluids inside a tilted square enclosure in the presence of oriented magnetic field. Am. J. Heat Mass Transf. 3, 186–224 (2016) Al-Kalbani, K.S.; Alam, M.S.; Rahman, M.M.: Finite element analysis of unsteady natural convective heat transfer and fluid flow of nanofluids inside a tilted square enclosure in the presence of oriented magnetic field. Am. J. Heat Mass Transf. 3, 186–224 (2016)
72.
Zurück zum Zitat Uddin, M.J.; Rahman, M.M.: Numerical computation of natural convective heat transport within nanofluids filled semi-circular shaped enclosure using nonhomogeneous dynamic model. Therm. Sci. Eng. Prog. 1, 25–38 (2017) Uddin, M.J.; Rahman, M.M.: Numerical computation of natural convective heat transport within nanofluids filled semi-circular shaped enclosure using nonhomogeneous dynamic model. Therm. Sci. Eng. Prog. 1, 25–38 (2017)
73.
Zurück zum Zitat Zienkiewicz, O.C.; Taylor, R.L.; Zienkiewicz, O.C.; Taylor, R.L.: The Finite Element Method, vol. 36. McGraw-Hill, London (1977)MATH Zienkiewicz, O.C.; Taylor, R.L.; Zienkiewicz, O.C.; Taylor, R.L.: The Finite Element Method, vol. 36. McGraw-Hill, London (1977)MATH
Metadaten
Titel
Impacts of Variable Porosity and Variable Permeability on the Thermal Augmentation of Cu–H2O Nanofluid-Drenched Porous Trapezoidal Enclosure Considering Thermal Nonequilibrium Model
verfasst von
Sheikha M. Al-Weheibi
M. M. Rahman
M. Z. Saghir
Publikationsdatum
16.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 2/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04234-6

Weitere Artikel der Ausgabe 2/2020

Arabian Journal for Science and Engineering 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.