Skip to main content
Erschienen in: Meccanica 12/2015

22.04.2015

Impinging cross-shaped submerged jet on a flat plate: a comparison of plane and hemispherical orifice nozzles

verfasst von: Kodjovi Sodjavi, Brice Montagné, Pierre Bragança, Amina Meslem, Florin Bode, Magdalena Kristiawan

Erschienen in: Meccanica | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is well known that the transfer of heat, mass and momentum to a wall by an impinging jet is partially linked to the way in which jet generation is realized. The organization of the vortices at the jet exit depends on the upstream conditions and on the geometry of the nozzle. Particle image velocimetry (PIV) and electrodiffusion techniques were used to investigate the characteristics of different impinging jets and the resulting wall shear rates and mass transfer. Two cross-shaped orifice jets, one produced by a plane orifice nozzle (i.e. a cross-shaped orifice made on a flat plate, CO/P) and the second by a hemispherical orifice nozzle (i.e. a cross-shaped orifice made on a hemisphere, CO/H), were compared to a reference round jet produced by a convergent nozzle. The distance between the jet exit and the target wall was equal to two nozzle equivalent diameters (D e ), based on the free orifice area. The Reynolds number, based on D e and on the exit bulk-velocity, was 5620 for each flow. PIV measurements give an overall view of the flow characteristics in their free and wall regions. The switching-over phenomena observed in the CO/P nozzle case, and already described in the literature with similar nozzles, did not occur in the jet from the CO/H nozzle. Electrodiffusion measurements showed differences in the shape and level of radial distribution of the wall shear rates and mass transfer. One of the most important observations is the large difference in wall shear stress between the three jets. For the same exit bulk-velocity, the maximum wall shear rate in the CO/P and CO/H nozzle jets was almost two and three times higher, respectively, than that of the reference convergent jet. This higher wall shear rate is accompanied by higher mass transfer rate. It is demonstrated that the cross-shaped orifices enhance the mass transfer not only locally but also globally.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu G, Antonia RA (2002) Effect of different initial conditions on a turbulent round free jet. Exp Fluids 33:677–683CrossRef Xu G, Antonia RA (2002) Effect of different initial conditions on a turbulent round free jet. Exp Fluids 33:677–683CrossRef
2.
Zurück zum Zitat Romano GP (2002) The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet. Exp Fluids 33:323–333CrossRef Romano GP (2002) The effect of boundary conditions by the side of the nozzle of a low Reynolds number jet. Exp Fluids 33:323–333CrossRef
3.
Zurück zum Zitat Quinn WR (2006) Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur J Mech B Fluids 25:279–301MATHCrossRef Quinn WR (2006) Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur J Mech B Fluids 25:279–301MATHCrossRef
4.
Zurück zum Zitat Mi J, Nathan GJ, Nobes DS (2001) Mixing characteristics of axisymmetric free jets from a contoured nozzle an orifice plate and a pipe. J Fluid Eng 123:878–883CrossRef Mi J, Nathan GJ, Nobes DS (2001) Mixing characteristics of axisymmetric free jets from a contoured nozzle an orifice plate and a pipe. J Fluid Eng 123:878–883CrossRef
5.
Zurück zum Zitat Husain ZD, Hussain AKMF (1979) Axisymetric mixing layer: influence of the initial and boundary conditions. AIAA J 17(1):48–55CrossRefADS Husain ZD, Hussain AKMF (1979) Axisymetric mixing layer: influence of the initial and boundary conditions. AIAA J 17(1):48–55CrossRefADS
6.
Zurück zum Zitat Nathan GJ et al (2006) Impacts of a jet’s exit flow pattern on mixing and combustion performance. Progress in energy and combustion science. Prog Energy Combust Sci 32(5–6):496–538CrossRef Nathan GJ et al (2006) Impacts of a jet’s exit flow pattern on mixing and combustion performance. Progress in energy and combustion science. Prog Energy Combust Sci 32(5–6):496–538CrossRef
7.
Zurück zum Zitat Hussain AKMF (1981) Coherent structures and studies of perturbed and unperturbed jets. In: Jimenez J (ed) The role of coherent structures in modelling turbulence and mixing. Springer, Heidelberg, pp 252–291CrossRef Hussain AKMF (1981) Coherent structures and studies of perturbed and unperturbed jets. In: Jimenez J (ed) The role of coherent structures in modelling turbulence and mixing. Springer, Heidelberg, pp 252–291CrossRef
8.
Zurück zum Zitat Hussain AKMF, Zaman KBMQ (1981) The ‘preferred mode’ of the axisymetric jet. J Fluid Mech 110:39–71CrossRefADS Hussain AKMF, Zaman KBMQ (1981) The ‘preferred mode’ of the axisymetric jet. J Fluid Mech 110:39–71CrossRefADS
9.
Zurück zum Zitat Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320CrossRefADS Hussain F, Husain HS (1989) Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J Fluid Mech 208:257–320CrossRefADS
10.
Zurück zum Zitat Zaman KBMQ, Reeder MF, Samimy M (1994) Control of axisymmetric jet using vortex generators. Phys Fluids 6(2):778–793CrossRefADS Zaman KBMQ, Reeder MF, Samimy M (1994) Control of axisymmetric jet using vortex generators. Phys Fluids 6(2):778–793CrossRefADS
11.
Zurück zum Zitat Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Annu Rev Fluid Mech 31:239–272CrossRefADS Gutmark EJ, Grinstein FF (1999) Flow control with noncircular jets. Annu Rev Fluid Mech 31:239–272CrossRefADS
12.
Zurück zum Zitat Mi J, Nathan GJ (1999) Effect of small vortex-generators on scalar mixing in the developing region of a turbulent jet. Int J Heat Mass Transf 42:3919–3926MATHCrossRef Mi J, Nathan GJ (1999) Effect of small vortex-generators on scalar mixing in the developing region of a turbulent jet. Int J Heat Mass Transf 42:3919–3926MATHCrossRef
13.
Zurück zum Zitat Zaman KBMQ, Wang FY, Georgiadis NJ (2003) Noise, turbulence and thrust of subsonic free jets from lobed nozzles. AIAA J 41(3):398–407CrossRefADS Zaman KBMQ, Wang FY, Georgiadis NJ (2003) Noise, turbulence and thrust of subsonic free jets from lobed nozzles. AIAA J 41(3):398–407CrossRefADS
14.
Zurück zum Zitat Gardon R, Cobonpue J (1962) Heat transfer between a flat plate and jets of air impinging on it. In: Proceedings of the International Developments in Heat Transfer (ASME), New York, pp 454–460 Gardon R, Cobonpue J (1962) Heat transfer between a flat plate and jets of air impinging on it. In: Proceedings of the International Developments in Heat Transfer (ASME), New York, pp 454–460
15.
Zurück zum Zitat Gardon R, Akfirat JC (1965) The role of turbulence in determining the heat-transfer characteristics of impinging jets. Int J Heat Mass Transf 8:1261–1272CrossRef Gardon R, Akfirat JC (1965) The role of turbulence in determining the heat-transfer characteristics of impinging jets. Int J Heat Mass Transf 8:1261–1272CrossRef
16.
Zurück zum Zitat Gardon R, Akfirat JC (1966) Heat transfer characteristics of impinging two-dimensional air jets. J Heat Transf 88(1):101–107CrossRef Gardon R, Akfirat JC (1966) Heat transfer characteristics of impinging two-dimensional air jets. J Heat Transf 88(1):101–107CrossRef
17.
Zurück zum Zitat Popiel CO, Boguslawski L (1988) Effect of flow structure on the heat or mass transfer on a flat plate in impinging round jet. In: 2nd UK national conference on heat transfer Popiel CO, Boguslawski L (1988) Effect of flow structure on the heat or mass transfer on a flat plate in impinging round jet. In: 2nd UK national conference on heat transfer
18.
Zurück zum Zitat Vejrazka J et al (2005) Effect of an external excitation on the flow structure in a circular impinging jet. Phys Fluids (1994–present) 17(10):105102CrossRefADS Vejrazka J et al (2005) Effect of an external excitation on the flow structure in a circular impinging jet. Phys Fluids (1994–present) 17(10):105102CrossRefADS
19.
Zurück zum Zitat Alekseenko SV et al (2007) Experimental study of an impinging jet with different swirl rates. Int J Heat Fluid Flow 28(6):1340–1359CrossRef Alekseenko SV et al (2007) Experimental study of an impinging jet with different swirl rates. Int J Heat Fluid Flow 28(6):1340–1359CrossRef
20.
Zurück zum Zitat Roux S et al (2011) Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf 54:3277–3290CrossRef Roux S et al (2011) Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Int J Heat Mass Transf 54:3277–3290CrossRef
21.
Zurück zum Zitat Trávníček Z et al (2012) Axisymmetric impinging jet excited by a synthetic jet system. Int J Heat Mass Transf 55(4):1279–1290CrossRef Trávníček Z et al (2012) Axisymmetric impinging jet excited by a synthetic jet system. Int J Heat Mass Transf 55(4):1279–1290CrossRef
22.
Zurück zum Zitat Sang-Joon L, Jung-Ho L, Dae-Hee L (1994) Local heat transfer measurements from an elliptic jet impinging on a flat plate using liquid crystal. Int J Heat Mass Transf 37(6):967–976CrossRef Sang-Joon L, Jung-Ho L, Dae-Hee L (1994) Local heat transfer measurements from an elliptic jet impinging on a flat plate using liquid crystal. Int J Heat Mass Transf 37(6):967–976CrossRef
23.
Zurück zum Zitat Lee J, Lee SJ (2000) The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int J Heat Mass Transf 43:3497–3509CrossRef Lee J, Lee SJ (2000) The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. Int J Heat Mass Transf 43:3497–3509CrossRef
24.
Zurück zum Zitat Gao N, Sun H, Ewing D (2003) Heat transfer to impinging round jets with triangular tabs. Int J Heat Mass Transf 46(14):2557–2569CrossRef Gao N, Sun H, Ewing D (2003) Heat transfer to impinging round jets with triangular tabs. Int J Heat Mass Transf 46(14):2557–2569CrossRef
25.
Zurück zum Zitat Nakod PM, Prabhu SV, Vedula RP (2008) Heat transfer augmentation between impinging circular air jet and flat plate using finned surfaces and vortex generators. Exp Thermal Fluid Sci 32(5):1168–1187CrossRef Nakod PM, Prabhu SV, Vedula RP (2008) Heat transfer augmentation between impinging circular air jet and flat plate using finned surfaces and vortex generators. Exp Thermal Fluid Sci 32(5):1168–1187CrossRef
26.
Zurück zum Zitat Violato D et al (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow 37:22–36CrossRef Violato D et al (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow 37:22–36CrossRef
27.
Zurück zum Zitat Herrero Martin R, Buchlin JM (2011) Jet impingement heat transfer from lobed nozzles. Int J Therm Sci 50(7):1199–1206CrossRef Herrero Martin R, Buchlin JM (2011) Jet impingement heat transfer from lobed nozzles. Int J Therm Sci 50(7):1199–1206CrossRef
28.
Zurück zum Zitat Gulati P, Katt V, Prabhu SV (2009) Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet. Int J Therm Sci 48:602–617CrossRef Gulati P, Katt V, Prabhu SV (2009) Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet. Int J Therm Sci 48:602–617CrossRef
29.
Zurück zum Zitat Gutmark EJ, Ho CM (1983) Preferred modes and the spreading rates of jets. Phys Fluids 26(10):2932–2938CrossRefADS Gutmark EJ, Ho CM (1983) Preferred modes and the spreading rates of jets. Phys Fluids 26(10):2932–2938CrossRefADS
30.
Zurück zum Zitat Nastase I, Meslem A (2010) Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles. Exp Fluids 48(4):693–714CrossRef Nastase I, Meslem A (2010) Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles. Exp Fluids 48(4):693–714CrossRef
31.
Zurück zum Zitat Hu H et al (2000) Particle image velocimetry and planar laser induced fluorescence measurements on lobed jet mixing flows. Exp Fluids (Suppl.) 29:S141–S157CrossRef Hu H et al (2000) Particle image velocimetry and planar laser induced fluorescence measurements on lobed jet mixing flows. Exp Fluids (Suppl.) 29:S141–S157CrossRef
32.
Zurück zum Zitat Vallis EA, Patrick MA, Wragg AA (1977) Techniques of wall measurements in fluid mechanics. In: Euromech.90. Nancy, France Vallis EA, Patrick MA, Wragg AA (1977) Techniques of wall measurements in fluid mechanics. In: Euromech.90. Nancy, France
33.
Zurück zum Zitat Kataoka K et al (1982) Mass transfer between a plane surface and an impinging turbulent jet: the influence of surface-pressure fluctuations. J Fluid Mech 119:91–105CrossRefADS Kataoka K et al (1982) Mass transfer between a plane surface and an impinging turbulent jet: the influence of surface-pressure fluctuations. J Fluid Mech 119:91–105CrossRefADS
34.
Zurück zum Zitat Chin DT, Tsang CH (1978) Mass transfer to an impinging jet electrode. J Electrochem Soc 125(9):1461–1470CrossRef Chin DT, Tsang CH (1978) Mass transfer to an impinging jet electrode. J Electrochem Soc 125(9):1461–1470CrossRef
35.
Zurück zum Zitat Kataoka K, Mizushina T (1974) Local enhancement of the rate of heat-transfer in an impinging round jet by free-stream turbulence. In: Heat transfer 1974; proceedings of the fifth international conference, Volume 2, Tokyo Kataoka K, Mizushina T (1974) Local enhancement of the rate of heat-transfer in an impinging round jet by free-stream turbulence. In: Heat transfer 1974; proceedings of the fifth international conference, Volume 2, Tokyo
36.
Zurück zum Zitat Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 37(12):1687–1697CrossRef Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 37(12):1687–1697CrossRef
37.
Zurück zum Zitat Hadziabdic M, Hanjalic K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260MATHCrossRefADS Hadziabdic M, Hanjalic K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260MATHCrossRefADS
38.
Zurück zum Zitat Alekseenko SV, Markovich DM (1994) Electrodiffusion diagnostics of wall shear stresses in impinging jet. J Appl Electrochem 24:626–631CrossRef Alekseenko SV, Markovich DM (1994) Electrodiffusion diagnostics of wall shear stresses in impinging jet. J Appl Electrochem 24:626–631CrossRef
39.
Zurück zum Zitat Phares DJ, Smedley GT, Flagan RC (2000) The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 418:351–375MATHCrossRefADS Phares DJ, Smedley GT, Flagan RC (2000) The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech 418:351–375MATHCrossRefADS
40.
Zurück zum Zitat Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54:4939–4948CrossRef Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54:4939–4948CrossRef
41.
Zurück zum Zitat El-Hassan M et al (2012) Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids 52(6):1475–1489CrossRef El-Hassan M et al (2012) Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp Fluids 52(6):1475–1489CrossRef
42.
Zurück zum Zitat Hall JW, Ewing D (2006) On the dynamics of the large-scale structures in round impinging jets. J Fluid Mech 555:439–458MATHCrossRefADS Hall JW, Ewing D (2006) On the dynamics of the large-scale structures in round impinging jets. J Fluid Mech 555:439–458MATHCrossRefADS
43.
Zurück zum Zitat El-Hassan M, Meslem A (2010) Time-resolved stereoscopic PIV investigation of the entrainment in the near-field of circular and daisy-shaped orifice jets. Phys Fluids 22(035107):26 El-Hassan M, Meslem A (2010) Time-resolved stereoscopic PIV investigation of the entrainment in the near-field of circular and daisy-shaped orifice jets. Phys Fluids 22(035107):26
44.
Zurück zum Zitat Kristiawan M et al (2012) Wall shear rates and mass transfer in impinging jets: comparison of circular convergent and cross-shaped orifice nozzles. Int J Heat Mass Transf 55:282–293CrossRef Kristiawan M et al (2012) Wall shear rates and mass transfer in impinging jets: comparison of circular convergent and cross-shaped orifice nozzles. Int J Heat Mass Transf 55:282–293CrossRef
45.
Zurück zum Zitat Rajaratnam N (1976) Turbulent jets. Elsevier, Amsterdam Rajaratnam N (1976) Turbulent jets. Elsevier, Amsterdam
46.
Zurück zum Zitat Belovich VM, Samimy M (1997) Mixing processes in a coaxial geometry with a central lobed mixer-nozzle. AIAA J 35(5):838–841CrossRefADS Belovich VM, Samimy M (1997) Mixing processes in a coaxial geometry with a central lobed mixer-nozzle. AIAA J 35(5):838–841CrossRefADS
47.
Zurück zum Zitat Bolashikov Z et al (2013) Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets. HVAC&R Res 20(2):238–250CrossRef Bolashikov Z et al (2013) Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets. HVAC&R Res 20(2):238–250CrossRef
48.
Zurück zum Zitat Meslem A et al (2013) Flow dynamics and mass transfer in impinging circular jet at low Reynolds number. Comparison of convergent and orifice nozzles. Int J Heat Mass Transf 67:25–45CrossRef Meslem A et al (2013) Flow dynamics and mass transfer in impinging circular jet at low Reynolds number. Comparison of convergent and orifice nozzles. Int J Heat Mass Transf 67:25–45CrossRef
49.
Zurück zum Zitat Scarano F, Riethmuller ML, Adrian RJ (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(3):S51–S60CrossRef Scarano F, Riethmuller ML, Adrian RJ (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(3):S51–S60CrossRef
50.
Zurück zum Zitat Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29(1):S003–S012 Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29(1):S003–S012
51.
Zurück zum Zitat Reiss LP, Hanratty TJ (1962) Measurement of instantaneous rates of mass transfer to a small sink on a wall. AIChE J 8(2):245–247CrossRef Reiss LP, Hanratty TJ (1962) Measurement of instantaneous rates of mass transfer to a small sink on a wall. AIChE J 8(2):245–247CrossRef
52.
Zurück zum Zitat Nastase I, Meslem A, Gervais P (2008) Primary and secondary vortical structures contribution in the entrainment of low Reynolds number jet flows. Exp Fluids 44(6):1027–1033CrossRef Nastase I, Meslem A, Gervais P (2008) Primary and secondary vortical structures contribution in the entrainment of low Reynolds number jet flows. Exp Fluids 44(6):1027–1033CrossRef
53.
Zurück zum Zitat Hu H et al (2000) Research on the vortical and turbulent structures in the lobed jet flow using laser induced fluorescence and particle image velocimetry techniques. Meas Sci Technol 11:698–711CrossRefADS Hu H et al (2000) Research on the vortical and turbulent structures in the lobed jet flow using laser induced fluorescence and particle image velocimetry techniques. Meas Sci Technol 11:698–711CrossRefADS
54.
Zurück zum Zitat Nastase I, Meslem A, El-Hassan M (2011) Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers. Fluid Dyn Res 43(6):065502CrossRefADS Nastase I, Meslem A, El-Hassan M (2011) Image processing analysis of vortex dynamics of lobed jets from three-dimensional diffusers. Fluid Dyn Res 43(6):065502CrossRefADS
55.
Zurück zum Zitat El-Hassan M, Meslem A, Abed-Meraïm K (2011) Experimental investigation of the flow in the near-field of a cross-shaped orifice jet. Phys Fluids 23(045101):16 El-Hassan M, Meslem A, Abed-Meraïm K (2011) Experimental investigation of the flow in the near-field of a cross-shaped orifice jet. Phys Fluids 23(045101):16
56.
Zurück zum Zitat Nastase I et al (2011) Lobed grilles for high mixing ventilation—an experimental analysis in a full scale model room. Build Environ 46(3):547–555MathSciNetCrossRef Nastase I et al (2011) Lobed grilles for high mixing ventilation—an experimental analysis in a full scale model room. Build Environ 46(3):547–555MathSciNetCrossRef
57.
Zurück zum Zitat Gorman JM, Sparrow EM, Abraham JP (2014) Slot jet impingement heat transfer in the presence of jet-axis switching. Int J Heat Mass Transf 78:50–57CrossRef Gorman JM, Sparrow EM, Abraham JP (2014) Slot jet impingement heat transfer in the presence of jet-axis switching. Int J Heat Mass Transf 78:50–57CrossRef
58.
Zurück zum Zitat Baydar E, Ozmen Y (2006) An experimental investigation on flow structures of confined and unconfined impinging air jets. Heat Mass Transf 42(4):338–346CrossRefADS Baydar E, Ozmen Y (2006) An experimental investigation on flow structures of confined and unconfined impinging air jets. Heat Mass Transf 42(4):338–346CrossRefADS
59.
Zurück zum Zitat Todde V, Spazzini PG, Sandberg M (2009) Experimental analysis of low-Reynolds number free jets. Evolution along the jet centerline and Reynolds number effects. Exp Fluids 47:279–294CrossRef Todde V, Spazzini PG, Sandberg M (2009) Experimental analysis of low-Reynolds number free jets. Evolution along the jet centerline and Reynolds number effects. Exp Fluids 47:279–294CrossRef
60.
Zurück zum Zitat Cooper D et al (1993) Impinging jet studies for turbulence model assessment—I. Flow-field experiments. Int J Heat Mass Transf 36(10):2675–2684CrossRef Cooper D et al (1993) Impinging jet studies for turbulence model assessment—I. Flow-field experiments. Int J Heat Mass Transf 36(10):2675–2684CrossRef
61.
Zurück zum Zitat Kazuya I et al (2009) Heat transfer characteristics of a planar water jet impinging normally or obliquely on a flat surface at relatively low Reynolds numbers. Exp Thermal Fluid Sci 33(8):1226–1234CrossRef Kazuya I et al (2009) Heat transfer characteristics of a planar water jet impinging normally or obliquely on a flat surface at relatively low Reynolds numbers. Exp Thermal Fluid Sci 33(8):1226–1234CrossRef
63.
Zurück zum Zitat Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54(23–24):4939–4948CrossRef Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54(23–24):4939–4948CrossRef
64.
Zurück zum Zitat Xu Z, Hangan H (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96(12):2383–2402CrossRef Xu Z, Hangan H (2008) Scale, boundary and inlet condition effects on impinging jets. J Wind Eng Ind Aerodyn 96(12):2383–2402CrossRef
Metadaten
Titel
Impinging cross-shaped submerged jet on a flat plate: a comparison of plane and hemispherical orifice nozzles
verfasst von
Kodjovi Sodjavi
Brice Montagné
Pierre Bragança
Amina Meslem
Florin Bode
Magdalena Kristiawan
Publikationsdatum
22.04.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 12/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0181-5

Weitere Artikel der Ausgabe 12/2015

Meccanica 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.