Skip to main content

2016 | OriginalPaper | Buchkapitel

Implanted Antennas in Biomedical Telemetry

verfasst von : Asimina Kiourti, Konstantina S. Nikita

Erschienen in: Handbook of Antenna Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomedical telemetry permits the measurement of physiological signals at a distance, through either wired or wireless communication technologies. One of the latest developments in wireless biomedical telemetry is in the field of implantable medical devices (IMDs). Such devices are implanted inside the patient’s body by means of a surgical operation and can be used for a number of diagnostic, monitoring, and therapeutic applications. Implantable antennas, i.e., antennas which are integrated into RF-enabled IMDs, exhibit numerous challenges in terms of design, fabrication, and testing and are, therefore, currently attracting significant research attention. Contributions from researchers of various disciplines build a rich pool of background information, while highlighting future prospects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abadia J, Merli F, Zurcher JF, Mosig JR, Skrivervik AK (2009) 3D spiral small antenna design and realization for biomedical telemetry in the MICS band. Radioengineering 18(4):359–367 Abadia J, Merli F, Zurcher JF, Mosig JR, Skrivervik AK (2009) 3D spiral small antenna design and realization for biomedical telemetry in the MICS band. Radioengineering 18(4):359–367
Zurück zum Zitat Ahmed Y, Hao Y, Parini C (2008) A 31.5 GHz patch antenna design for medical implants. Hindawi Int J Antennas Propag 2008:1–6CrossRef Ahmed Y, Hao Y, Parini C (2008) A 31.5 GHz patch antenna design for medical implants. Hindawi Int J Antennas Propag 2008:1–6CrossRef
Zurück zum Zitat Azad MZ, Ali M (2009) A miniature implanted inverted-F antenna for GPS application. IEEE Trans Antennas Propag 57(6):1854–1858CrossRef Azad MZ, Ali M (2009) A miniature implanted inverted-F antenna for GPS application. IEEE Trans Antennas Propag 57(6):1854–1858CrossRef
Zurück zum Zitat Bao JZ, Lu ST, Hurt WD (1997) Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies. IEEE Trans Microw Theory Techn 45(10):1730–1741CrossRef Bao JZ, Lu ST, Hurt WD (1997) Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies. IEEE Trans Microw Theory Techn 45(10):1730–1741CrossRef
Zurück zum Zitat Biotronik (2012) Lumax, Berlin. http://www.biotronik.com/wps/wcm/connect/en_de_web/biotronik/sub_top/healthcareprofessionals/products/tachyarrhythmia_therapy/. Last day accessed 4 Aug 2014 Biotronik (2012) Lumax, Berlin. http://​www.​biotronik.​com/​wps/​wcm/​connect/​en_​de_​web/​biotronik/​sub_​top/​healthcareprofes​sionals/​products/​tachyarrhythmia_​therapy/​.​ Last day accessed 4 Aug 2014
Zurück zum Zitat Buchegger T, Obberger G, Reisenzahn A, Hochmair E, Stelzer A, Springer A (2005) Ultra-wideband transceivers for cochlear implants. EURASIP J App Signal Process 18:3069–3075CrossRefMATH Buchegger T, Obberger G, Reisenzahn A, Hochmair E, Stelzer A, Springer A (2005) Ultra-wideband transceivers for cochlear implants. EURASIP J App Signal Process 18:3069–3075CrossRefMATH
Zurück zum Zitat Chen ZN, Liu GC, See TSP (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1853CrossRef Chen ZN, Liu GC, See TSP (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1853CrossRef
Zurück zum Zitat Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, Irazoqui PP (2010) Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng 57(6):1487–1496CrossRef Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, Irazoqui PP (2010) Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng 57(6):1487–1496CrossRef
Zurück zum Zitat Chow EY, Morris MM, Irazoqui PP (2013) Implantable RF medical devices. IEEE Microw Mag 14(4):64–73CrossRef Chow EY, Morris MM, Irazoqui PP (2013) Implantable RF medical devices. IEEE Microw Mag 14(4):64–73CrossRef
Zurück zum Zitat Conil E, Hadjem A, Lacroux F, Wong MF, Wiart J (2008) Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain. Phys Med Biol 53:1511–1525CrossRef Conil E, Hadjem A, Lacroux F, Wong MF, Wiart J (2008) Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain. Phys Med Biol 53:1511–1525CrossRef
Zurück zum Zitat Dey S, Mittra R (1996) Compact microstrip patch antenna. Microw Opt Technol Lett 13(1):12–14CrossRef Dey S, Mittra R (1996) Compact microstrip patch antenna. Microw Opt Technol Lett 13(1):12–14CrossRef
Zurück zum Zitat Furse CM (2009) Biomedical telemetry: today’s opportunities and challenges. In: IEEE international workshop on antenna technology Furse CM (2009) Biomedical telemetry: today’s opportunities and challenges. In: IEEE international workshop on antenna technology
Zurück zum Zitat Gabriel C (2005) Dielectric properties of biological tissue: variation with age. Bioelectromagnetics 26(Suppl 7):S12–S18CrossRef Gabriel C (2005) Dielectric properties of biological tissue: variation with age. Bioelectromagnetics 26(Suppl 7):S12–S18CrossRef
Zurück zum Zitat Gabriel C, Gabriel S, Corthout E (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249CrossRef Gabriel C, Gabriel S, Corthout E (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249CrossRef
Zurück zum Zitat Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: II. Measurements in the frequency Range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRef Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: II. Measurements in the frequency Range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRef
Zurück zum Zitat Gabriel S, Lau RW, Gabriel C (1996c) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRef Gabriel S, Lau RW, Gabriel C (1996c) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRef
Zurück zum Zitat Gemio J, Parron J, Soler J (2010) Human body effects on implantable antennas for ISM bands applications: models comparison and propagation losses study. Prog Electromgn Res 110:437–452CrossRef Gemio J, Parron J, Soler J (2010) Human body effects on implantable antennas for ISM bands applications: models comparison and propagation losses study. Prog Electromgn Res 110:437–452CrossRef
Zurück zum Zitat Gosalia K, Lazzi G, Humayun M (2004) Investigation of microwave data telemetry link for a retinal prosthesis. IEEE Trans Microwave Theory Tech 52(8):1925–1932CrossRef Gosalia K, Lazzi G, Humayun M (2004) Investigation of microwave data telemetry link for a retinal prosthesis. IEEE Trans Microwave Theory Tech 52(8):1925–1932CrossRef
Zurück zum Zitat Greatbatch W, Homes CF (1991) History of implantable devices. IEEE Eng Med Biol Mag 10(3):38–41CrossRef Greatbatch W, Homes CF (1991) History of implantable devices. IEEE Eng Med Biol Mag 10(3):38–41CrossRef
Zurück zum Zitat Guillory K, Normann RA (1999) A 100-channel system for real time detection and storage of extracellular spike waveforms. J Neurosci Methods 91:21–29CrossRef Guillory K, Normann RA (1999) A 100-channel system for real time detection and storage of extracellular spike waveforms. J Neurosci Methods 91:21–29CrossRef
Zurück zum Zitat Hofmann M, Fischer G, Weigel R, Kissinger D (2013) Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans Microwave Theory Tech 61:2195–2204CrossRef Hofmann M, Fischer G, Weigel R, Kissinger D (2013) Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans Microwave Theory Tech 61:2195–2204CrossRef
Zurück zum Zitat Huang W, Kishk AA (2011) Embedded spiral microstrip implantable antenna. Hindawi Int J Antennas Propag 2011:1–6CrossRef Huang W, Kishk AA (2011) Embedded spiral microstrip implantable antenna. Hindawi Int J Antennas Propag 2011:1–6CrossRef
Zurück zum Zitat Huang FJ, Lee CM, Chang CL, Chen LK, Yo TC, Luo CH (2011) Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans Antennas Propag 59(7):2646–2653CrossRef Huang FJ, Lee CM, Chang CL, Chen LK, Yo TC, Luo CH (2011) Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans Antennas Propag 59(7):2646–2653CrossRef
Zurück zum Zitat Institute of Electrical and Electronics Engineers (IEEE) Std 802.15.6. 2012 (2012) IEEE standard for local, metropolitan area networks: wireless body area networks. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York Institute of Electrical and Electronics Engineers (IEEE) Std 802.15.6. 2012 (2012) IEEE standard for local, metropolitan area networks: wireless body area networks. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York
Zurück zum Zitat Institute of Electrical and Electronics Engineers (IEEE) Std 95.1-1999 (1999) IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York Institute of Electrical and Electronics Engineers (IEEE) Std 95.1-1999 (1999) IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York
Zurück zum Zitat Institute of Electrical and Electronics Engineers (IEEE) Std 95.1-2005. 2005 (2005) IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York Institute of Electrical and Electronics Engineers (IEEE) Std 95.1-2005. 2005 (2005) IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, New York
Zurück zum Zitat International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522 International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522
Zurück zum Zitat Ito K, Furuya K, Okano Y, Hamada L (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Jpn 84:67–77CrossRef Ito K, Furuya K, Okano Y, Hamada L (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Jpn 84:67–77CrossRef
Zurück zum Zitat Karacolak T, Hood AZ, Topsakal E (2008) Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans Microw Theory Tech 56(4):1001–1008CrossRef Karacolak T, Hood AZ, Topsakal E (2008) Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans Microw Theory Tech 56(4):1001–1008CrossRef
Zurück zum Zitat Karacolak T, Cooper R, Topsakal E (2009) Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry. IEEE Trans Antennas Propag 57(9):2806–2812CrossRef Karacolak T, Cooper R, Topsakal E (2009) Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry. IEEE Trans Antennas Propag 57(9):2806–2812CrossRef
Zurück zum Zitat Karacolak T, Cooper R, Butler J, Fisher S, Topsakal E (2010) In vivo verification of implantable antennas using rats as model animals. IEEE Antennas Wirel Propag Lett 9:334–337CrossRef Karacolak T, Cooper R, Butler J, Fisher S, Topsakal E (2010) In vivo verification of implantable antennas using rats as model animals. IEEE Antennas Wirel Propag Lett 9:334–337CrossRef
Zurück zum Zitat Kawoos U, Tofighi MR, Warty R, Kralick FA, Rosen A (2008) In-vitro and in-vivo trans-scalp evaluation of an intracranial pressure implant at 2.4 GHz. IEEE Trans Microwave Theory Tech 56(10):2356–2365CrossRef Kawoos U, Tofighi MR, Warty R, Kralick FA, Rosen A (2008) In-vitro and in-vivo trans-scalp evaluation of an intracranial pressure implant at 2.4 GHz. IEEE Trans Microwave Theory Tech 56(10):2356–2365CrossRef
Zurück zum Zitat Kendir GA, Liu W, Wang G, Sivaprakasam M, Bashirullah R, Humayun MS, Weil JD (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst 52(5):857–866CrossRef Kendir GA, Liu W, Wang G, Sivaprakasam M, Bashirullah R, Humayun MS, Weil JD (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst 52(5):857–866CrossRef
Zurück zum Zitat Kim J, Rahmat-Samii Y (1996) Planar inverted F antennas on implantable medical devices: meandered type versus spiral type. Microw Opt Technol Lett 48(3):567–572CrossRef Kim J, Rahmat-Samii Y (1996) Planar inverted F antennas on implantable medical devices: meandered type versus spiral type. Microw Opt Technol Lett 48(3):567–572CrossRef
Zurück zum Zitat Kim J, Rahmat-Samii Y (2004) Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans Microw Theory Tech 52(8):1934–1943CrossRef Kim J, Rahmat-Samii Y (2004) Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans Microw Theory Tech 52(8):1934–1943CrossRef
Zurück zum Zitat Kim J, Rahmat-Samii Y (2006) SAR reduction of implanted planar inverted F antennas with non-uniform width radiator. In: IEEE international symposium on antennas and propagation, Albuquerque Kim J, Rahmat-Samii Y (2006) SAR reduction of implanted planar inverted F antennas with non-uniform width radiator. In: IEEE international symposium on antennas and propagation, Albuquerque
Zurück zum Zitat Kiourti A, Nikita KS (2011) Meandered versus spiral novel miniature PIFAs implanted in the human head: tuning and performance. In: 2nd ICST international conference on wireless mobile communication and healthcare (MobiHealth 2012), Kos Island Kiourti A, Nikita KS (2011) Meandered versus spiral novel miniature PIFAs implanted in the human head: tuning and performance. In: 2nd ICST international conference on wireless mobile communication and healthcare (MobiHealth 2012), Kos Island
Zurück zum Zitat Kiourti A, Nikita KS (2012a) A review of implantable patch antennas for biomedical telemetry: challenges and solutions. IEEE Antennas Propag Mag 54(3):210–228CrossRef Kiourti A, Nikita KS (2012a) A review of implantable patch antennas for biomedical telemetry: challenges and solutions. IEEE Antennas Propag Mag 54(3):210–228CrossRef
Zurück zum Zitat Kiourti A, Nikita KS (2012b) Miniature scalp-implantable antennas for telemetry in the MICS and ISM Bands: design, safety considerations and link budget analysis. IEEE Trans Antennas Propag 60(6):3568–3575MathSciNetCrossRefMATH Kiourti A, Nikita KS (2012b) Miniature scalp-implantable antennas for telemetry in the MICS and ISM Bands: design, safety considerations and link budget analysis. IEEE Trans Antennas Propag 60(6):3568–3575MathSciNetCrossRefMATH
Zurück zum Zitat Kiourti A, Nikita KS (2012c) Accelerated design of optimized implantable antennas for medical telemetry. IEEE Antennas Wirel Propag Lett 11:1655–1658CrossRef Kiourti A, Nikita KS (2012c) Accelerated design of optimized implantable antennas for medical telemetry. IEEE Antennas Wirel Propag Lett 11:1655–1658CrossRef
Zurück zum Zitat Kiourti A, Nikita KS (2012d) Miniaturization vs gain and safety considerations of implantable antennas for wireless biotelemetry. In: International symposium on antennas and propagation, Chicago Kiourti A, Nikita KS (2012d) Miniaturization vs gain and safety considerations of implantable antennas for wireless biotelemetry. In: International symposium on antennas and propagation, Chicago
Zurück zum Zitat Kiourti A, Nikita KS (2013a) Numerical assessment of the performance of a scalp-implantable antenna: effects of head anatomy and dielectric parameters. Bioelectromagnetics 34(3):167–179CrossRef Kiourti A, Nikita KS (2013a) Numerical assessment of the performance of a scalp-implantable antenna: effects of head anatomy and dielectric parameters. Bioelectromagnetics 34(3):167–179CrossRef
Zurück zum Zitat Kiourti A, Nikita KS (2013b) Design of implantable antennas for medical telemetry: dependence upon operation frequency, tissue anatomy, and implantation site. IGI Global Int J Monit Surveillance Technol Res (IJMSTR) 1(1):16–33CrossRef Kiourti A, Nikita KS (2013b) Design of implantable antennas for medical telemetry: dependence upon operation frequency, tissue anatomy, and implantation site. IGI Global Int J Monit Surveillance Technol Res (IJMSTR) 1(1):16–33CrossRef
Zurück zum Zitat Kiourti A, Nikita KS (2014) Implantable antennas: a tutorial on design, fabrication, and in vitro/in vivo testing. IEEE Microw Mag 15(4):77–91CrossRef Kiourti A, Nikita KS (2014) Implantable antennas: a tutorial on design, fabrication, and in vitro/in vivo testing. IEEE Microw Mag 15(4):77–91CrossRef
Zurück zum Zitat Kiourti A, Christopoulou M, Nikita KS (2011a) Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry. In: IEEE international symposium on antennas and propagation, Spokane Kiourti A, Christopoulou M, Nikita KS (2011a) Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry. In: IEEE international symposium on antennas and propagation, Spokane
Zurück zum Zitat Kiourti A, Tsakalakis M, Nikita KS (2011b) Parametric study and design of implantable PIFAs for wireless biotelemetry. In: 2nd ICST international conference on wireless mobile communication and healthcare, Kos Island Kiourti A, Tsakalakis M, Nikita KS (2011b) Parametric study and design of implantable PIFAs for wireless biotelemetry. In: 2nd ICST international conference on wireless mobile communication and healthcare, Kos Island
Zurück zum Zitat Kiourti A, Costa JR, Fernandes CA, Santiago AG, Nikita KS (2012) Miniature implantable antennas for biomedical telemetry: from simulation to realization. IEEE Trans Biomed Eng 59(11):3140–3147CrossRef Kiourti A, Costa JR, Fernandes CA, Santiago AG, Nikita KS (2012) Miniature implantable antennas for biomedical telemetry: from simulation to realization. IEEE Trans Biomed Eng 59(11):3140–3147CrossRef
Zurück zum Zitat Kiourti A, Psathas KA, Lelovas P, Kostomitsopoulos N, Nikita KS (2013) In vivo tests of implantable antennas in rats: antenna size and inter-subject considerations. IEEE Antennas Wirel Propag Lett 12:1396–1399CrossRef Kiourti A, Psathas KA, Lelovas P, Kostomitsopoulos N, Nikita KS (2013) In vivo tests of implantable antennas in rats: antenna size and inter-subject considerations. IEEE Antennas Wirel Propag Lett 12:1396–1399CrossRef
Zurück zum Zitat Kiourti A, Psathas KA, Nikita KS (2014a) Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges. Wiley Bioelectrom 35(1):1–15CrossRef Kiourti A, Psathas KA, Nikita KS (2014a) Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges. Wiley Bioelectrom 35(1):1–15CrossRef
Zurück zum Zitat Kiourti A, Costa JR, Fernandes CA, Nikita KS (2014b) A broadband implantable and a dual-band on-body repeater antenna: design and transmission performance. IEEE Trans Antennas Propag 62(6):2899–2908CrossRef Kiourti A, Costa JR, Fernandes CA, Nikita KS (2014b) A broadband implantable and a dual-band on-body repeater antenna: design and transmission performance. IEEE Trans Antennas Propag 62(6):2899–2908CrossRef
Zurück zum Zitat Lee CM, Yo TC, Luo CH (2006) Compact broadband stacked implantable antenna for biotelemetry with medical devices. In: IEEE Annual conference on wireless and microwave technology, Clearwater Lee CM, Yo TC, Luo CH (2006) Compact broadband stacked implantable antenna for biotelemetry with medical devices. In: IEEE Annual conference on wireless and microwave technology, Clearwater
Zurück zum Zitat Lee CM, Yo TC, Huang FJ, Luo CH (2009) Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry. Microw Opt Technol Lett 51(3):749–752CrossRef Lee CM, Yo TC, Huang FJ, Luo CH (2009) Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry. Microw Opt Technol Lett 51(3):749–752CrossRef
Zurück zum Zitat Liu WC, Chen SH, Wu CM (2008a) Implantable broadband circular stacked PIFA antenna for biotelemetry communication. J Electromagn Waves Appl 22(13):1791–1800CrossRef Liu WC, Chen SH, Wu CM (2008a) Implantable broadband circular stacked PIFA antenna for biotelemetry communication. J Electromagn Waves Appl 22(13):1791–1800CrossRef
Zurück zum Zitat Liu WC, Yeh FM, Ghavami M (2008b) Miniaturized implantable broadband antenna for biotelemetry communication. Microw Opt Technol Lett 50(9):2407–2409CrossRef Liu WC, Yeh FM, Ghavami M (2008b) Miniaturized implantable broadband antenna for biotelemetry communication. Microw Opt Technol Lett 50(9):2407–2409CrossRef
Zurück zum Zitat Liu WC, Chen SH, Wu CM (2009) Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices. Microw Opt Technol Lett 51(3):755–757CrossRef Liu WC, Chen SH, Wu CM (2009) Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices. Microw Opt Technol Lett 51(3):755–757CrossRef
Zurück zum Zitat Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. IEEE J Microelectromech Syst 13(3):429–440CrossRef Mitcheson PD, Green TC, Yeatman EM, Holmes AS (2004) Architectures for vibration-driven micropower generators. IEEE J Microelectromech Syst 13(3):429–440CrossRef
Zurück zum Zitat Noroozi Z, Hojjat-Kashani F (2012) Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring. Prog Electromagn Res Lett 28:9–21CrossRef Noroozi Z, Hojjat-Kashani F (2012) Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring. Prog Electromagn Res Lett 28:9–21CrossRef
Zurück zum Zitat Permana H, Fang Q, Cosic I (2011) 3-Layer implantable microstrip antenna optimized for retinal prosthesis system in MICS band. In: IEEE international symposium on bioelectronics and bioinformatics Permana H, Fang Q, Cosic I (2011) 3-Layer implantable microstrip antenna optimized for retinal prosthesis system in MICS band. In: IEEE international symposium on bioelectronics and bioinformatics
Zurück zum Zitat Permana H, Fang Q, Rowe WST (2013) Hermetic implantable antenna inside vitreous humor simulating fluid. Prog Electromagn Res 133:571–590CrossRef Permana H, Fang Q, Rowe WST (2013) Hermetic implantable antenna inside vitreous humor simulating fluid. Prog Electromagn Res 133:571–590CrossRef
Zurück zum Zitat Rucker D, Al-Alawi A, Adada R, Al-Rizzo HM (2007) A miniaturized tunable microstrip antenna for wireless communications with implanted medical devices. In: 2nd international ICST conference on body area networks, Brussels Rucker D, Al-Alawi A, Adada R, Al-Rizzo HM (2007) A miniaturized tunable microstrip antenna for wireless communications with implanted medical devices. In: 2nd international ICST conference on body area networks, Brussels
Zurück zum Zitat Sánchez-Fernández CJ, Quevedo-Teruel O, Requena-Carrión J, Inclán-Sánchez L, Rajo-Iglesias E (2010) Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microw Antennas Propag 4(8):1048–1055CrossRef Sánchez-Fernández CJ, Quevedo-Teruel O, Requena-Carrión J, Inclán-Sánchez L, Rajo-Iglesias E (2010) Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microw Antennas Propag 4(8):1048–1055CrossRef
Zurück zum Zitat Sani A, Alomainy A, Hao Y (2009) Numerical characterization and link budget evaluation of wireless implants considering different digital human phantoms. IEEE Trans Microw Theory Tech 57(10):2605–2613CrossRef Sani A, Alomainy A, Hao Y (2009) Numerical characterization and link budget evaluation of wireless implants considering different digital human phantoms. IEEE Trans Microw Theory Tech 57(10):2605–2613CrossRef
Zurück zum Zitat Sani A, Rajab M, Foster R, Hao Y (2010) Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proc IEEE 98:1648–1655CrossRef Sani A, Rajab M, Foster R, Hao Y (2010) Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proc IEEE 98:1648–1655CrossRef
Zurück zum Zitat Savci HS, Sula A, Wang Z, Dogan NS, Arvas E (2005) MICS transceivers: regulatory standards and applications. In: Proceedings of the IEEE international southeast conference Savci HS, Sula A, Wang Z, Dogan NS, Arvas E (2005) MICS transceivers: regulatory standards and applications. In: Proceedings of the IEEE international southeast conference
Zurück zum Zitat Scanlon WG, Evans NE, McCreesh ZM (1997) RF performance of a 418 MHz radio telemeter packaged for human vaginal placement. IEEE Trans Biomed Eng 44(5):427–430CrossRef Scanlon WG, Evans NE, McCreesh ZM (1997) RF performance of a 418 MHz radio telemeter packaged for human vaginal placement. IEEE Trans Biomed Eng 44(5):427–430CrossRef
Zurück zum Zitat Scanlon WG, Burns JB, Evans NE (2000) Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Trans Biomed Eng 47:527–534CrossRef Scanlon WG, Burns JB, Evans NE (2000) Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Trans Biomed Eng 47:527–534CrossRef
Zurück zum Zitat Scarpello ML, Kurup D, Rogier H, Ginste DV, Axisa F, Vanfleteren J, Joseph W, Martens L, Vermeeren G (2011) Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE Trans Antennas Propag 59(10):3556–3564CrossRef Scarpello ML, Kurup D, Rogier H, Ginste DV, Axisa F, Vanfleteren J, Joseph W, Martens L, Vermeeren G (2011) Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE Trans Antennas Propag 59(10):3556–3564CrossRef
Zurück zum Zitat Schmid G, Neubauer G, Illievich UM, Alesch F (2003) Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 24:413–422CrossRef Schmid G, Neubauer G, Illievich UM, Alesch F (2003) Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 24:413–422CrossRef
Zurück zum Zitat Shults MC, Rhodes RK, Updike SJ, Gilligan BJ, Reining WN (1994) A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41(10):937–942CrossRef Shults MC, Rhodes RK, Updike SJ, Gilligan BJ, Reining WN (1994) A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41(10):937–942CrossRef
Zurück zum Zitat Skrivervik AK, Merli F (2011) Design strategies for implantable antennas. In: Antennas and propagation conference, Loughborough, Nov 2011 Skrivervik AK, Merli F (2011) Design strategies for implantable antennas. In: Antennas and propagation conference, Loughborough, Nov 2011
Zurück zum Zitat Soontornpipit P, Furse CM, Chung YC (2004) Design of implantable microstrip antenna for communication with medical implants. IEEE Trans Microw Theory Tech 52(8):1944–1951CrossRef Soontornpipit P, Furse CM, Chung YC (2004) Design of implantable microstrip antenna for communication with medical implants. IEEE Trans Microw Theory Tech 52(8):1944–1951CrossRef
Zurück zum Zitat Soontornpipit P, Furse CM, Chung YC (2005) Miniaturized biocompatible microstrip antenna using genetic algorithm. IEEE Trans Antennas Propag 53(6):1939–1945CrossRef Soontornpipit P, Furse CM, Chung YC (2005) Miniaturized biocompatible microstrip antenna using genetic algorithm. IEEE Trans Antennas Propag 53(6):1939–1945CrossRef
Zurück zum Zitat Sun W, Yuan YX (2006) Optimization theory and methods. Springer, New YorkMATH Sun W, Yuan YX (2006) Optimization theory and methods. Springer, New YorkMATH
Zurück zum Zitat Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42(5):524–528CrossRef Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42(5):524–528CrossRef
Zurück zum Zitat Valdastri P, Menciassi A, Arena A, Caccamo C, Dario P (2004) An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans Inf Technol Biomed 8(3):271–278CrossRef Valdastri P, Menciassi A, Arena A, Caccamo C, Dario P (2004) An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans Inf Technol Biomed 8(3):271–278CrossRef
Zurück zum Zitat Vidal N, Curto S, Lopez Villegas JM, Sieiro J, Ramos FM (2012) Detuning study of implantable antennas inside the human body. Prog Electromagn Res 124:265–283CrossRef Vidal N, Curto S, Lopez Villegas JM, Sieiro J, Ramos FM (2012) Detuning study of implantable antennas inside the human body. Prog Electromagn Res 124:265–283CrossRef
Zurück zum Zitat Vidal N, Lopez-Villegas JM, Curto S, Colomer J, Ahyoune S, Garcia A, Sieiro JJ, Ramos FM (2013) Design of an implantable broadband antenna for medical telemetry applications. In: 7th European conference on antennas and propagation Vidal N, Lopez-Villegas JM, Curto S, Colomer J, Ahyoune S, Garcia A, Sieiro JJ, Ramos FM (2013) Design of an implantable broadband antenna for medical telemetry applications. In: 7th European conference on antennas and propagation
Zurück zum Zitat Virtanen H, Keshvari J, Lappalainen R (2006) Interaction of radio frequency electromagnetic fields and passive metallic implants-a brief review. Bioelectromagnetics 27:431–439CrossRef Virtanen H, Keshvari J, Lappalainen R (2006) Interaction of radio frequency electromagnetic fields and passive metallic implants-a brief review. Bioelectromagnetics 27:431–439CrossRef
Zurück zum Zitat Warty R, Tofighi MR, Kawoos U, Rosen A (2008) Characterization of implantable antennas for intracranial pressure monitoring: reflection by and transmission through a scalp phantom. IEEE Trans Microw Theory Tech 56(10):2366–2376CrossRef Warty R, Tofighi MR, Kawoos U, Rosen A (2008) Characterization of implantable antennas for intracranial pressure monitoring: reflection by and transmission through a scalp phantom. IEEE Trans Microw Theory Tech 56(10):2366–2376CrossRef
Zurück zum Zitat Weiss MD, Smith JL, Bach J (2009) RF coupling in a 433 MHz biotelemetry system for an artificial hip. IEEE Antennas Wirel Propag Lett 8:916–919CrossRef Weiss MD, Smith JL, Bach J (2009) RF coupling in a 433 MHz biotelemetry system for an artificial hip. IEEE Antennas Wirel Propag Lett 8:916–919CrossRef
Zurück zum Zitat Wessels D (2002) Implantable pacemakers and defibrillators: device overview and EMI considerations. In: Proceedings of the IEEE international symposium electromagnetic compatibility (EMC 2002) Wessels D (2002) Implantable pacemakers and defibrillators: device overview and EMI considerations. In: Proceedings of the IEEE international symposium electromagnetic compatibility (EMC 2002)
Zurück zum Zitat Xia W, Saito K, Takahashi M, Ito K (2009) Performances of an implanted cavity slot antenna embedded in the human arm. IEEE Trans Antennas Propag 57(4):894–899CrossRef Xia W, Saito K, Takahashi M, Ito K (2009) Performances of an implanted cavity slot antenna embedded in the human arm. IEEE Trans Antennas Propag 57(4):894–899CrossRef
Zurück zum Zitat Zarlink (2006) Medical implantable RF transceiver ZL70101 datasheet, Zarlink Semiconductor, Ottawa Zarlink (2006) Medical implantable RF transceiver ZL70101 datasheet, Zarlink Semiconductor, Ottawa
Metadaten
Titel
Implanted Antennas in Biomedical Telemetry
verfasst von
Asimina Kiourti
Konstantina S. Nikita
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-4560-44-3_94

Neuer Inhalt