Skip to main content
Erschienen in:

22.04.2022

Implementation of a Compact Traffic Signs Recognition System Using a New Squeezed YOLO

verfasst von: Khaled Khnissi, Chiraz Ben Jabeur, Hassene Seddik

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The importance of traffic signs cannot be overstated when it comes to road safety. The necessity for rapid and precise Traffic Sign classifier remains a challenge due to the complexity of traffic signs shapes and forms. In this paper, a real-time detector is presented for the German Traffic Sign Recognition Benchmark (GTSRB). GTSRB has 43 different classes with various shapes, forms, and colours. Their similarity is useful for object localisation but not for sign classification. In this article, a real-time detector for GTSRB is created using an upgraded compact YOLO-V4 Technique and implemented on the new NVIDIA Jetson Nano. To find and detect GTSRB pictures, a compact and efficient classifier is introduced. For the first time, this paper compares the detection and categorization of traffic signs using YOLO-V3 and 4, both regular and tiny.
Because most of real-time identification algorithms require a lot of processing power, the suggested compact classifier, which is based on the new YOLO-V4 Tiny, can recognize all 43 traffic signals with an average accuracy of 95.44% percent and a YOLO model size of just 9 MB. The GTSRB test dataset was used to validate this approach, which was then tested on the new Jetson Nano. In comparison to existing algorithms such as CNN, YOLO-V3, YOLO-V4, and Faster R-CNN, the suggested technique may successfully save more computational power and processing time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Pires, C., Torfs, K., Areal, A., Goldenbeld, C., Vanlaar, W., Granié, M.-A., Stürmer, Y.A., Usami, D.S., Kaiser, S., Jankowska-Karpa, D., Nikolaou, D., Holte, H., Kakinuma, T., Trigoso, J., Van den Berghe, W., Meesmann, U.: Car drivers’ road safety performance: a benchmark across 32 countries. IATSS Re. 44(3), 166–179 (2020). https://doi.org/10.1016/j.iatssr.2020.08.002CrossRef Pires, C., Torfs, K., Areal, A., Goldenbeld, C., Vanlaar, W., Granié, M.-A., Stürmer, Y.A., Usami, D.S., Kaiser, S., Jankowska-Karpa, D., Nikolaou, D., Holte, H., Kakinuma, T., Trigoso, J., Van den Berghe, W., Meesmann, U.: Car drivers’ road safety performance: a benchmark across 32 countries. IATSS Re. 44(3), 166–179 (2020). https://​doi.​org/​10.​1016/​j.​iatssr.​2020.​08.​002CrossRef
9.
11.
Zurück zum Zitat Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: "Detection of Traffic Signs in Real-World Images: the German Traffic Sign Detection Benchmark," the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, pp. 1-8. (2013). https://doi.org/10.1109/IJCNN.2013.6706807 Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: "Detection of Traffic Signs in Real-World Images: the German Traffic Sign Detection Benchmark," the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, pp. 1-8. (2013). https://​doi.​org/​10.​1109/​IJCNN.​2013.​6706807
27.
Zurück zum Zitat Iandola, Forrest N, Han, Song, Moskewicz, Matthew W, Ashraf, Khalid, Dally, William J, Keutzer, Kurt; Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016) Iandola, Forrest N, Han, Song, Moskewicz, Matthew W, Ashraf, Khalid, Dally, William J, Keutzer, Kurt; Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)
Metadaten
Titel
Implementation of a Compact Traffic Signs Recognition System Using a New Squeezed YOLO
verfasst von
Khaled Khnissi
Chiraz Ben Jabeur
Hassene Seddik
Publikationsdatum
22.04.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 2/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00304-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.