Skip to main content
Erschienen in: Journal of Scientific Computing 2-3/2017

18.09.2017

Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order

verfasst von: Sidafa Conde, Sigal Gottlieb, Zachary J. Grant, John N. Shadid

Erschienen in: Journal of Scientific Computing | Ausgabe 2-3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Strong stability preserving (SSP) time discretizations preserve the monotonicity properties satisfied by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. The search for high order strong stability preserving time-stepping methods with high order and large allowable time-step has been an active area of research. It is known that implicit SSP Runge–Kutta methods exist only up to sixth order; however, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge–Kutta methods of any linear order. In the current work we find implicit SSP Runge–Kutta methods with high linear order \(p_{lin} \le 9\) and nonlinear orders \(p=2,3,4\), that are optimal in terms of allowable SSP time-step. Next, we formulate a novel optimization problem for implicit–explicit (IMEX) SSP Runge–Kutta methods and find optimized IMEX SSP Runge–Kutta pairs that have high linear order \(p_{lin} \le 7\) and nonlinear orders up to \(p=4\). We also find implicit methods with large linear stability regions that pair with known explicit SSP Runge–Kutta methods. These methods are then tested on sample problems to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ascher, U., Ruuth, S., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)CrossRefMATHMathSciNet Ascher, U., Ruuth, S., Wetton, B.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)CrossRefMATHMathSciNet
2.
Zurück zum Zitat Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997). (Special Issue on Time Integration)CrossRefMATHMathSciNet Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997). (Special Issue on Time Integration)CrossRefMATHMathSciNet
3.
Zurück zum Zitat Boscarino, S., Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35, A22–A51 (2013)CrossRefMATHMathSciNet Boscarino, S., Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35, A22–A51 (2013)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)CrossRefMATH Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)CrossRefMATH
5.
Zurück zum Zitat Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)CrossRefMATHMathSciNet Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)CrossRefMATHMathSciNet
6.
Zurück zum Zitat Christlieb, A.J., Gottlieb, S., Grant, Z., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)CrossRefMATHMathSciNet Christlieb, A.J., Gottlieb, S., Grant, Z., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Crouzeix, M.: Une m’ethode multipas implicite–explicite pour l’approximation des equations d’evolution paraboliques. Numerische Mathematik 35, 257–276 (1980)CrossRefMATHMathSciNet Crouzeix, M.: Une m’ethode multipas implicite–explicite pour l’approximation des equations d’evolution paraboliques. Numerische Mathematik 35, 257–276 (1980)CrossRefMATHMathSciNet
10.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)CrossRefMATHMathSciNet Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 249, 201–219 (2005)MATHMathSciNet Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 249, 201–219 (2005)MATHMathSciNet
12.
Zurück zum Zitat Gottlieb, S., Grant, Z., Higgs, D.: Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order. Math. Comput. 84, 2743–2761 (2015)CrossRefMATHMathSciNet Gottlieb, S., Grant, Z., Higgs, D.: Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order. Math. Comput. 84, 2743–2761 (2015)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Press, London (2011)CrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Press, London (2011)CrossRefMATH
15.
Zurück zum Zitat Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)CrossRefMATHMathSciNet Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Higueras, I.: Characterizing strong stability preserving additive Runge–Kutta methods. J. Sci. Comput. 39, 115–128 (2009)CrossRefMATHMathSciNet Higueras, I.: Characterizing strong stability preserving additive Runge–Kutta methods. J. Sci. Comput. 39, 115–128 (2009)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX Runge–Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014)CrossRefMATHMathSciNet Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX Runge–Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014)CrossRefMATHMathSciNet
19.
Zurück zum Zitat Kennedy, C., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)CrossRefMATHMathSciNet Kennedy, C., Carpenter, M.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)CrossRefMATHMathSciNet
20.
Zurück zum Zitat Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30, 2113–2136 (2008)CrossRefMATHMathSciNet Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30, 2113–2136 (2008)CrossRefMATHMathSciNet
21.
22.
Zurück zum Zitat Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2012)CrossRefMATHMathSciNet Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2012)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 52, 373 (2009)CrossRefMATHMathSciNet Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 52, 373 (2009)CrossRefMATHMathSciNet
26.
Zurück zum Zitat Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous galerkin methods. J. Sci. Comput. 60, 313–344 (2014)CrossRefMATHMathSciNet Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous galerkin methods. J. Sci. Comput. 60, 313–344 (2014)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys. 231, 3561–3586 (2012)CrossRefMATH Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys. 231, 3561–3586 (2012)CrossRefMATH
28.
Zurück zum Zitat Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MATHMathSciNet Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MATHMathSciNet
29.
Zurück zum Zitat Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)CrossRefMATHMathSciNet Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)CrossRefMATHMathSciNet Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)CrossRefMATHMathSciNet
32.
Zurück zum Zitat Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)CrossRefMATHMathSciNet Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)CrossRefMATHMathSciNet
Metadaten
Titel
Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order
verfasst von
Sidafa Conde
Sigal Gottlieb
Zachary J. Grant
John N. Shadid
Publikationsdatum
18.09.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2-3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0560-2

Weitere Artikel der Ausgabe 2-3/2017

Journal of Scientific Computing 2-3/2017 Zur Ausgabe