Skip to main content

2023 | OriginalPaper | Buchkapitel

Importance Evaluation of Factors for the Railway Accidents Based on TF-K

verfasst von : Dan Chang, Min Zhang, Daqing Gong

Erschienen in: IEIS 2022

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rail accidents cause casualty and financial loss to society. In order to extract and identify the key factors from the accident reports more accurately, this study added the word frequency-correlation importance evaluation function(TF-K*) based on complex network on the basis of text mining, and built an importance evaluation model of factors for the railway accidents. When evaluating the importance of factors, the word frequency and the correlation between factors can be considered simultaneously. In this study, 213 railway accident reports from China and Britain were collected to analyze the cause of the accident, and the final results also verified the validity of the model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Katsakiori, P., Sakellaropoulos, G., Manatakis, E.: Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models. Saf. Sci. 47(7), 1007–1015 (2009)CrossRef Katsakiori, P., Sakellaropoulos, G., Manatakis, E.: Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models. Saf. Sci. 47(7), 1007–1015 (2009)CrossRef
2.
Zurück zum Zitat Reason, J.: Human error. Cambridge University Press, Cambridge (1990)CrossRef Reason, J.: Human error. Cambridge University Press, Cambridge (1990)CrossRef
3.
Zurück zum Zitat Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42(4), 237–270 (2004)CrossRef Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42(4), 237–270 (2004)CrossRef
5.
Zurück zum Zitat Dong, A.: Application of CAST and STPA to railroad safety in China. Diss. Massachusetts Institute of Technology (2012) Dong, A.: Application of CAST and STPA to railroad safety in China. Diss. Massachusetts Institute of Technology (2012)
6.
Zurück zum Zitat Shappell, S.A., Wiegmann, D.A.: A human error approach to accident investigation: the taxonomy of unsafe operations. Int. J. Aviat. Psychol. 7(4), 269–291 (1997)CrossRef Shappell, S.A., Wiegmann, D.A.: A human error approach to accident investigation: the taxonomy of unsafe operations. Int. J. Aviat. Psychol. 7(4), 269–291 (1997)CrossRef
7.
Zurück zum Zitat Liu, P., et al.: Fault tree analysis combined with quantitative analysis for high-speed railway accidents. Safety Sci. 79, 344–357 (2015)CrossRef Liu, P., et al.: Fault tree analysis combined with quantitative analysis for high-speed railway accidents. Safety Sci. 79, 344–357 (2015)CrossRef
8.
Zurück zum Zitat Fan, Y., et al.: Applying systems thinking approach to accident analysis in China: case study of “7.23” Yong-Tai-Wen High-Speed train accident. Safety Sci. 76, 190–201 (2015) Fan, Y., et al.: Applying systems thinking approach to accident analysis in China: case study of “7.23” Yong-Tai-Wen High-Speed train accident. Safety Sci. 76, 190–201 (2015)
9.
Zurück zum Zitat Özaydın, E., et al.: A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM). Ocean Engineering 247, 110705 (2022) Özaydın, E., et al.: A hybrid model for marine accident analysis based on Bayesian Network (BN) and Association Rule Mining (ARM). Ocean Engineering 247, 110705 (2022)
10.
Zurück zum Zitat Chen, Y., Deng, Y.: Traffic accident risk factor identification based on complex network. IOP Conf. Ser.: Earth Environ. Sci. Publishing 719(3), 032074 (2021)CrossRef Chen, Y., Deng, Y.: Traffic accident risk factor identification based on complex network. IOP Conf. Ser.: Earth Environ. Sci. Publishing 719(3), 032074 (2021)CrossRef
11.
Zurück zum Zitat Lv, L.: High-speed rail safety analysis based on dual-weighted complex network. Diss. New Jersey Institute of Technology (2020) Lv, L.: High-speed rail safety analysis based on dual-weighted complex network. Diss. New Jersey Institute of Technology (2020)
12.
Zurück zum Zitat Goh, Y.M., Ubeynarayana, C.U.: Construction accident narrative classification: An evaluation of text mining techniques. Accident Anal. Prev. 108, 122–130 (2017)CrossRef Goh, Y.M., Ubeynarayana, C.U.: Construction accident narrative classification: An evaluation of text mining techniques. Accident Anal. Prev. 108, 122–130 (2017)CrossRef
13.
Zurück zum Zitat Zhong, B., et al.: Hazard analysis: a deep learning and text mining framework for accident prevention. Adv. Eng. Inform. 46, 101152 (2020) Zhong, B., et al.: Hazard analysis: a deep learning and text mining framework for accident prevention. Adv. Eng. Inform. 46, 101152 (2020)
14.
Zurück zum Zitat Na, X.U., et al.: An improved text mining approach to extract safety risk factors from construction accident reports. Saf. Sci. 138, 105216 (2021)CrossRef Na, X.U., et al.: An improved text mining approach to extract safety risk factors from construction accident reports. Saf. Sci. 138, 105216 (2021)CrossRef
15.
Zurück zum Zitat Chen, Z., Wang, T.: Evaluation method of accident causes importance based on text mining and complex network: a case study of larger and above accidents in housing and municipal engineering. China Safety Prod. Sci. Technol. 18, 224–230 (2022) Chen, Z., Wang, T.: Evaluation method of accident causes importance based on text mining and complex network: a case study of larger and above accidents in housing and municipal engineering. China Safety Prod. Sci. Technol. 18, 224–230 (2022)
16.
Zurück zum Zitat Hua, L., Zheng, W.: Research on causation of railway accidents based on complex network theory. China Safety Sci. J. 29.S1, 114 (2019) Hua, L., Zheng, W.: Research on causation of railway accidents based on complex network theory. China Safety Sci. J. 29.S1, 114 (2019)
Metadaten
Titel
Importance Evaluation of Factors for the Railway Accidents Based on TF-K
verfasst von
Dan Chang
Min Zhang
Daqing Gong
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3618-2_7

Premium Partner