Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2013

01.02.2013

Impression Creep Behavior of 316LN Stainless Steel

verfasst von: M. D. Mathew, Naveena, D. Vijayanand

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O.D. Sherby and P.E. Armstrong, Prediction of Activation Energies for Creep and Self-Diffusion from Hot Hardness Data, Metall. Mater. Trans. B, 1971, 2(12), p 3479–3484CrossRef O.D. Sherby and P.E. Armstrong, Prediction of Activation Energies for Creep and Self-Diffusion from Hot Hardness Data, Metall. Mater. Trans. B, 1971, 2(12), p 3479–3484CrossRef
2.
Zurück zum Zitat H.D. Merchant, G.S. Murty, S.N. Bahadur, L.T. Dwivedi, and Y. Mehrotra, Hardness-Temperature Relationships in Metals, J. Mater. Sci., 1973, 8, p 437–442CrossRef H.D. Merchant, G.S. Murty, S.N. Bahadur, L.T. Dwivedi, and Y. Mehrotra, Hardness-Temperature Relationships in Metals, J. Mater. Sci., 1973, 8, p 437–442CrossRef
3.
Zurück zum Zitat P.M. Sargent and M.F. Ashby, Indentation Creep, Mater. Sci. Technol., 1992, 8(7), p 594–601CrossRef P.M. Sargent and M.F. Ashby, Indentation Creep, Mater. Sci. Technol., 1992, 8(7), p 594–601CrossRef
4.
Zurück zum Zitat U.K. Viswanathan, T.R.G. Kutty, R. Keswani, and C. Ganguly, Evaluation of Hot Hardness and Creep of a 350 Grade Commercial Maraging Steel, J. Mater. Sci., 1996, 31, p 2705–2709CrossRef U.K. Viswanathan, T.R.G. Kutty, R. Keswani, and C. Ganguly, Evaluation of Hot Hardness and Creep of a 350 Grade Commercial Maraging Steel, J. Mater. Sci., 1996, 31, p 2705–2709CrossRef
5.
Zurück zum Zitat J.C.M. Li and S.N. Chu, Impression Creep: A New Creep Test, J. Mater. Sci., 1977, 12, p 2200–2208CrossRef J.C.M. Li and S.N. Chu, Impression Creep: A New Creep Test, J. Mater. Sci., 1977, 12, p 2200–2208CrossRef
6.
Zurück zum Zitat J. Larsen-Badse, ORNL-TM-1862 Report, 1967 J. Larsen-Badse, ORNL-TM-1862 Report, 1967
7.
Zurück zum Zitat S.H. Wang, Impression Creep Behaviour in Weldments, J. Mar. Sci. Technol., 1994, 2(1), p 17–24 S.H. Wang, Impression Creep Behaviour in Weldments, J. Mar. Sci. Technol., 1994, 2(1), p 17–24
8.
Zurück zum Zitat S.N.G. Chu and J.C.M. Li, Impression Creep of β-Tin Single Crystals, J. Mater. Sci. Eng., 1979, 39, p 1–10CrossRef S.N.G. Chu and J.C.M. Li, Impression Creep of β-Tin Single Crystals, J. Mater. Sci. Eng., 1979, 39, p 1–10CrossRef
9.
Zurück zum Zitat D. Chiang and J.C.M. Li, Impression Creep of Lead, J. Mater. Res., 1994, 9(4), p 903–908CrossRef D. Chiang and J.C.M. Li, Impression Creep of Lead, J. Mater. Res., 1994, 9(4), p 903–908CrossRef
10.
Zurück zum Zitat G.S. Murty and D.H. Sastry, Impression Creep of Zinc and the Rate-Controlling Dislocation Mechanism of Plastic Flow at High Temperatures, Phys. Stat. Sol. A, 1982, 70, p 63–71CrossRef G.S. Murty and D.H. Sastry, Impression Creep of Zinc and the Rate-Controlling Dislocation Mechanism of Plastic Flow at High Temperatures, Phys. Stat. Sol. A, 1982, 70, p 63–71CrossRef
11.
Zurück zum Zitat G.S. Murty and D.H. Sastry, Impression Creep and High Temperature Deformation Mechanism in Cadmium, Trans. Indian Inst. Met., 1981, 34, p 195–201 G.S. Murty and D.H. Sastry, Impression Creep and High Temperature Deformation Mechanism in Cadmium, Trans. Indian Inst. Met., 1981, 34, p 195–201
12.
Zurück zum Zitat R. Mahmudi and F. Kabirian, Impression Creep Behaviour of Cast AZ91 Magnesium Alloy, Metall. Mater. Trans. A, 2009, 40A, p 116–127 R. Mahmudi and F. Kabirian, Impression Creep Behaviour of Cast AZ91 Magnesium Alloy, Metall. Mater. Trans. A, 2009, 40A, p 116–127
13.
Zurück zum Zitat R. Mahmudi, Impression Creep Behaviour of Cast Pb-Sn Alloys, J. Alloys Compd., 2007, 427, p 124–129CrossRef R. Mahmudi, Impression Creep Behaviour of Cast Pb-Sn Alloys, J. Alloys Compd., 2007, 427, p 124–129CrossRef
14.
Zurück zum Zitat D.H. Sastry, Impression Creep Technique—An Overview, Mater. Sci. Eng. A, 2005, 409, p 67–75CrossRef D.H. Sastry, Impression Creep Technique—An Overview, Mater. Sci. Eng. A, 2005, 409, p 67–75CrossRef
15.
Zurück zum Zitat H.Y. Yu, M.A. Imam, and B.B. Rath, An Impression Test Method for Characterization of the Flow Behaviour of Superplastic Material, Mater. Sci. Eng., 1986, 79, p 125–132CrossRef H.Y. Yu, M.A. Imam, and B.B. Rath, An Impression Test Method for Characterization of the Flow Behaviour of Superplastic Material, Mater. Sci. Eng., 1986, 79, p 125–132CrossRef
16.
Zurück zum Zitat T.H. Hyde, W. Sun, and J.A. Williams, Creep Behaviour of Parent, Weld and HAZ Materials of New, Service-aged and Repaired 1/2Cr1/2Mo1/4V:2 1/4Cr1Mo Pipe Welds at 640 °C, Mat. High Temp., 1991, 16, p 117–129CrossRef T.H. Hyde, W. Sun, and J.A. Williams, Creep Behaviour of Parent, Weld and HAZ Materials of New, Service-aged and Repaired 1/2Cr1/2Mo1/4V:2 1/4Cr1Mo Pipe Welds at 640 °C, Mat. High Temp., 1991, 16, p 117–129CrossRef
17.
Zurück zum Zitat N.Q. Chinh, P. Tasnadi, A. Juhasz, P. Szommer, E. Szep-Kiss, and I. Kovacs, Investigation of the High Temperature Plasticity of Materials by Indentation Measurements, Key Eng. Mater., 1994, 97–98, p 159–168CrossRef N.Q. Chinh, P. Tasnadi, A. Juhasz, P. Szommer, E. Szep-Kiss, and I. Kovacs, Investigation of the High Temperature Plasticity of Materials by Indentation Measurements, Key Eng. Mater., 1994, 97–98, p 159–168CrossRef
18.
Zurück zum Zitat K.M. Fox, J.R. Hellmann, E.C. Dickey, J.D. Green, and D.L. Shellmann, Impression and Compression Creep of SiAlON Ceramics, J. Am. Ceram. Soc., 2006, 89(8), p 2555–2563CrossRef K.M. Fox, J.R. Hellmann, E.C. Dickey, J.D. Green, and D.L. Shellmann, Impression and Compression Creep of SiAlON Ceramics, J. Am. Ceram. Soc., 2006, 89(8), p 2555–2563CrossRef
19.
Zurück zum Zitat M.A. Azeem, A.K. Mondal, and S. Kumar, Creep Behaviour of Short Fibre Reinforced QE22 Magnesium Alloy Using Impression Creep Test, Trans. Indian Inst. Met., 2005, 58(2–3), p 489–492 M.A. Azeem, A.K. Mondal, and S. Kumar, Creep Behaviour of Short Fibre Reinforced QE22 Magnesium Alloy Using Impression Creep Test, Trans. Indian Inst. Met., 2005, 58(2–3), p 489–492
20.
Zurück zum Zitat A.K. Mondal and S. Kumar, Creep Behaviour of AE42 Magnesium Alloy and Its Composites Using Impression Creep Technique, Mater. Sci. Forum, 2010, 638–642, p 1552–1557CrossRef A.K. Mondal and S. Kumar, Creep Behaviour of AE42 Magnesium Alloy and Its Composites Using Impression Creep Technique, Mater. Sci. Forum, 2010, 638–642, p 1552–1557CrossRef
21.
Zurück zum Zitat F. Yang and J.C.M. Li, Impression Creep of Thin Film by Vacancy Diffusion. 1. Straight Punch, J. Appl. Phys., 1993, 74, p 4382–4389CrossRef F. Yang and J.C.M. Li, Impression Creep of Thin Film by Vacancy Diffusion. 1. Straight Punch, J. Appl. Phys., 1993, 74, p 4382–4389CrossRef
22.
Zurück zum Zitat H.Y. Yu and J.C.M. Li, Computer Simulation of Impression Creep by the Finite Element Method, J. Mater. Sci., 1977, 12, p 2214–2222CrossRef H.Y. Yu and J.C.M. Li, Computer Simulation of Impression Creep by the Finite Element Method, J. Mater. Sci., 1977, 12, p 2214–2222CrossRef
23.
Zurück zum Zitat E.C. Yu and J.C.M. Li, Impression Creep of LiF Single Crystals, Philos. Mag., 1977, 36(4), p 811–825CrossRef E.C. Yu and J.C.M. Li, Impression Creep of LiF Single Crystals, Philos. Mag., 1977, 36(4), p 811–825CrossRef
24.
Zurück zum Zitat D. Dorner, K. Roller, B. Skrotzki, B. Stockhert, and G. Eggeler, Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing, Mater. Sci. Eng. A, 2003, 357A, p 346–354 D. Dorner, K. Roller, B. Skrotzki, B. Stockhert, and G. Eggeler, Creep of a TiAl Alloy: A Comparison of Indentation and Tensile Testing, Mater. Sci. Eng. A, 2003, 357A, p 346–354
25.
Zurück zum Zitat L. Peng, F. Yang, J.-F. Nie, and J.C.M. Li, Impression Creep of a Mg-8Zn-4Al-0.5Ca Alloy, Mater. Sci. Eng. A, 2005, 410–411, p 42–47 L. Peng, F. Yang, J.-F. Nie, and J.C.M. Li, Impression Creep of a Mg-8Zn-4Al-0.5Ca Alloy, Mater. Sci. Eng. A, 2005, 410–411, p 42–47
26.
Zurück zum Zitat P.S. Gondavarti and K. Linga Murty, Creep Anisotropy of Zinc Using Impression Tests, J. Mater. Sci. Lett., 1987, 6, p 456–458CrossRef P.S. Gondavarti and K. Linga Murty, Creep Anisotropy of Zinc Using Impression Tests, J. Mater. Sci. Lett., 1987, 6, p 456–458CrossRef
27.
Zurück zum Zitat G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behaviour of Cast Mg-5Sn-xCa Alloys, Mater. Sci. Eng. A, 2010, 527, p 2087–2098CrossRef G. Nayyeri and R. Mahmudi, The Microstructure and Impression Creep Behaviour of Cast Mg-5Sn-xCa Alloys, Mater. Sci. Eng. A, 2010, 527, p 2087–2098CrossRef
28.
Zurück zum Zitat T.H. Hyde, K.A. Yehia, and A.A. Becker, Interpretation of Impression Creep Data Using a Reference Stress Approach, Int. J. Mech. Sci., 1993, 35(6), p 451–462CrossRef T.H. Hyde, K.A. Yehia, and A.A. Becker, Interpretation of Impression Creep Data Using a Reference Stress Approach, Int. J. Mech. Sci., 1993, 35(6), p 451–462CrossRef
29.
Zurück zum Zitat T.H. Hyde, K.A. Yehia, and A.A. Becker, Application of the Reference Stress Method for Interpreting Impression Creep Test Data, Mat. High Temp., 1995, 13(3), p 133–138 T.H. Hyde, K.A. Yehia, and A.A. Becker, Application of the Reference Stress Method for Interpreting Impression Creep Test Data, Mat. High Temp., 1995, 13(3), p 133–138
30.
Zurück zum Zitat V. Ganesan, M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Creep Strengthening of Low Carbon Grade Type 316LN Stainless Steel by Nitrogen, Trans. Indian Inst. Met., 2010, 63(2–3), p 417–421CrossRef V. Ganesan, M.D. Mathew, P. Parameswaran, and K. Bhanu Sankara Rao, Creep Strengthening of Low Carbon Grade Type 316LN Stainless Steel by Nitrogen, Trans. Indian Inst. Met., 2010, 63(2–3), p 417–421CrossRef
31.
Zurück zum Zitat M.D. Mathew, Evolution of Creep Resistant 316 Stainless Steel for Sodium Cooled Fast Reactor Applications, Trans. Indian Inst. Met., 2010, 63(2–3), p 151–158CrossRef M.D. Mathew, Evolution of Creep Resistant 316 Stainless Steel for Sodium Cooled Fast Reactor Applications, Trans. Indian Inst. Met., 2010, 63(2–3), p 151–158CrossRef
Metadaten
Titel
Impression Creep Behavior of 316LN Stainless Steel
verfasst von
M. D. Mathew
Naveena
D. Vijayanand
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0290-4

Weitere Artikel der Ausgabe 2/2013

Journal of Materials Engineering and Performance 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.