Skip to main content
Erschienen in:

07.08.2024

Improved Adaptive Type-2 Fuzzy Detection and Simple Linear Regression-Based Filter for Removing Salt & Pepper Noise

verfasst von: Abhishek Kumar, Sanjeev Kumar, Asutosh Kar

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 12/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Image denoising has gained in relevance as a component of image preprocessing due to the increased use of digital images in a range of applications, as well as the degradation of image quality caused by noise introduced by unavoidable occurrences. This work suggests a novel two-stage filter to remove salt and pepper noise from the images. It operates in two stages, the first stage uses an enhanced adaptive type-2 fuzzy noise identifier to identify the corrupted pixel, and the second stage uses a simple linear regression-based approach filter to denoise the corrupted pixel. We first identify a pixel as corrupted or uncorrupted using an improved adaptive type-2 fuzzy-based Gaussian membership function with variables both mean and variance for a specific corrupted image frame. The second step is denoising the damaged pixel using a linear regression-based technique. Herein, we propose a novel co-design method that uses the Gaussian membership function for detection and a linear regression-based denoising technique without any parameter tuning, resulting in better time efficiency. We validate the proposed improved adaptive type-2 fuzzy detection and linear regression-based filter (IAFDLRBF) on a variety of standard images and real-time images with varying noise density. We compare the simulation results with various state-of-the-art methods in terms of various assessment metrics. The results demonstrate the effectiveness of the proposed filter even at high noise densities by providing better detail and edge preservation of an image.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat F. Ahmed, S. Das, Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans. Fuzzy Syst. 22(5), 1352–1358 (2014)CrossRef F. Ahmed, S. Das, Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans. Fuzzy Syst. 22(5), 1352–1358 (2014)CrossRef
2.
Zurück zum Zitat M. Aslam, T. Radhika, A. Chandrasekar, Q. Zhu, Improved event-triggered-based output tracking for a class of delayed networked T-S fuzzy systems. Int. J. Fuzzy Syst. 26, 1247 (2024)CrossRef M. Aslam, T. Radhika, A. Chandrasekar, Q. Zhu, Improved event-triggered-based output tracking for a class of delayed networked T-S fuzzy systems. Int. J. Fuzzy Syst. 26, 1247 (2024)CrossRef
3.
Zurück zum Zitat J. Astola, P. Kuosmanen, Fundamentals of nonlinear digital filtering. Boca Raton. FL: CRC (1997) J. Astola, P. Kuosmanen, Fundamentals of nonlinear digital filtering. Boca Raton. FL: CRC (1997)
4.
Zurück zum Zitat H. Bharadhwaj, V. Singh, N.K. Verma, A Type-2 fuzzy systems approach for clustering based identification of a T-S regression model. In: computational intelligence: theories, applications and future directions. Vol 1(Springer, 2019), p. 359 374 H. Bharadhwaj, V. Singh, N.K. Verma, A Type-2 fuzzy systems approach for clustering based identification of a T-S regression model. In: computational intelligence: theories, applications and future directions. Vol 1(Springer, 2019), p. 359 374
5.
Zurück zum Zitat D.R.K. Brownrigg, The weighted median filter. Commun. Ass. Comput. 27(8), 807–818 (1984) D.R.K. Brownrigg, The weighted median filter. Commun. Ass. Comput. 27(8), 807–818 (1984)
6.
Zurück zum Zitat K. Cao, E. Liu, A.K. Jain, Segmentation and enhancement of latent fingerprints: a coarse to fine ridge structure dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1847–1859 (2014)CrossRef K. Cao, E. Liu, A.K. Jain, Segmentation and enhancement of latent fingerprints: a coarse to fine ridge structure dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1847–1859 (2014)CrossRef
7.
Zurück zum Zitat O. Castillo, P. Melin, Type-2 fuzzy logic: theory and applications (Springer, Berlin, 2008)CrossRef O. Castillo, P. Melin, Type-2 fuzzy logic: theory and applications (Springer, Berlin, 2008)CrossRef
8.
Zurück zum Zitat O. Castillo, J.R. Castro, P. Melin, Interval type-3 fuzzy system: theory and design. Stud. Fuzziness Soft Comput. 418, 13–43 (2022)CrossRef O. Castillo, J.R. Castro, P. Melin, Interval type-3 fuzzy system: theory and design. Stud. Fuzziness Soft Comput. 418, 13–43 (2022)CrossRef
9.
Zurück zum Zitat R.H. Chan, C.W. Ho, M. Nikolova, Salt and pepper noise removal by median type noise detectors and detail preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)CrossRef R.H. Chan, C.W. Ho, M. Nikolova, Salt and pepper noise removal by median type noise detectors and detail preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)CrossRef
10.
Zurück zum Zitat A. Chandrasekar, T. Radhika, Q. Zhu, State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach. Neural. Process. Lett. 54, 327–345 (2022)CrossRef A. Chandrasekar, T. Radhika, Q. Zhu, State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach. Neural. Process. Lett. 54, 327–345 (2022)CrossRef
11.
Zurück zum Zitat J. Chen, G. Zhang, S. Xu, H. Yu, A blind CNN denoising model for random-valued impulse noise. IEEE Access. 7, 124647–124661 (2019)CrossRef J. Chen, G. Zhang, S. Xu, H. Yu, A blind CNN denoising model for random-valued impulse noise. IEEE Access. 7, 124647–124661 (2019)CrossRef
12.
Zurück zum Zitat J. Chopra, A. Kumar, A.K. Aggarwal, A. Marwaha, An efficient watermarking for protecting signature biometric template. 5th international conference on signal processing and integrated networks (SPIN). IEEE. 413–418 2018 J. Chopra, A. Kumar, A.K. Aggarwal, A. Marwaha, An efficient watermarking for protecting signature biometric template. 5th international conference on signal processing and integrated networks (SPIN). IEEE. 413–418 2018
13.
Zurück zum Zitat E. Davies, On the noise suppression and image enhancement characteristics of the median, truncated median and mode filters. Pattern Recognit. Lett. 7(2), 87–97 (1988)MathSciNetCrossRef E. Davies, On the noise suppression and image enhancement characteristics of the median, truncated median and mode filters. Pattern Recognit. Lett. 7(2), 87–97 (1988)MathSciNetCrossRef
14.
Zurück zum Zitat J. Delon, A. Desolneux. A patch-based approach for random valued impulse noise removal. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 1093–1096 (2012) J. Delon, A. Desolneux. A patch-based approach for random valued impulse noise removal. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 1093–1096 (2012)
15.
Zurück zum Zitat U. Ghanekar, A.K. Singh, R. Pandey, A contrast enhancement based filter for removal of random valued impulse noise. IEEE Signal Process. Lett. 17(1), 47–50 (2010)CrossRef U. Ghanekar, A.K. Singh, R. Pandey, A contrast enhancement based filter for removal of random valued impulse noise. IEEE Signal Process. Lett. 17(1), 47–50 (2010)CrossRef
16.
Zurück zum Zitat G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition. 2261–2269 (2017) G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition. 2261–2269 (2017)
17.
Zurück zum Zitat L. Jin, W. Zhang, G. Ma, E. Song, Learning deep CNNs for impulse noise removal in images. J. Vis. Commun. Image Represent. 62, 193–205 (2019)CrossRef L. Jin, W. Zhang, G. Ma, E. Song, Learning deep CNNs for impulse noise removal in images. J. Vis. Commun. Image Represent. 62, 193–205 (2019)CrossRef
18.
Zurück zum Zitat H.Y. Khaw, F.C. Soon, J.H. Chuah, C. Chow, High-density impulse noise detection and removal using deep convolutional neural network with particle swarm optimization. IET Image Process. 13(2), 365–374 (2019)CrossRef H.Y. Khaw, F.C. Soon, J.H. Chuah, C. Chow, High-density impulse noise detection and removal using deep convolutional neural network with particle swarm optimization. IET Image Process. 13(2), 365–374 (2019)CrossRef
19.
Zurück zum Zitat S.J. Ko, Y.H. Lee, Center weighted median filters and their applications and image enhancements. IEEE Trans. Circuits Syst. 38(9), 984–993 (1991)CrossRef S.J. Ko, Y.H. Lee, Center weighted median filters and their applications and image enhancements. IEEE Trans. Circuits Syst. 38(9), 984–993 (1991)CrossRef
20.
Zurück zum Zitat C.S. Lee, Y.H. Kuo, P.T. Yu, Weighted fuzzy mean filters for image processing. Fuzzy Sets Syst. 89(2), 157–180 (1997)CrossRef C.S. Lee, Y.H. Kuo, P.T. Yu, Weighted fuzzy mean filters for image processing. Fuzzy Sets Syst. 89(2), 157–180 (1997)CrossRef
21.
Zurück zum Zitat C.S. Lee, Y.H. Kuo, Adaptive fuzzy filter and its application to image enhancement. Fuzzy techniques in image processing. Studies in Fuzziness and Soft Computing. (Physica, Heidelberg, 2000) p. 172–193 C.S. Lee, Y.H. Kuo, Adaptive fuzzy filter and its application to image enhancement. Fuzzy techniques in image processing. Studies in Fuzziness and Soft Computing. (Physica, Heidelberg, 2000) p. 172–193
22.
Zurück zum Zitat T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, A.K. Nandi, Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)CrossRef T. Lei, X. Jia, Y. Zhang, L. He, H. Meng, A.K. Nandi, Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)CrossRef
23.
Zurück zum Zitat G. Li, X. Xu, M. Zhang, Q. Liu, Densely connected network for impulse noise removal. Pattern Anal. Appl. 23, 1263–1275 (2020)MathSciNetCrossRef G. Li, X. Xu, M. Zhang, Q. Liu, Densely connected network for impulse noise removal. Pattern Anal. Appl. 23, 1263–1275 (2020)MathSciNetCrossRef
24.
Zurück zum Zitat Q. Liu, X. Li, J. Yang, Optimum co-design for image denoising between Type-2 fuzzy identifier and matrix completion denoiser. IEEE Trans. Fuzzy Syst. 30(1), 287 (2022)CrossRef Q. Liu, X. Li, J. Yang, Optimum co-design for image denoising between Type-2 fuzzy identifier and matrix completion denoiser. IEEE Trans. Fuzzy Syst. 30(1), 287 (2022)CrossRef
25.
Zurück zum Zitat T. Loupas, W.N. McDicken, P.L. Allan, An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36(1), 129–135 (1989)CrossRef T. Loupas, W.N. McDicken, P.L. Allan, An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36(1), 129–135 (1989)CrossRef
26.
Zurück zum Zitat S. Maini, A.K. Aggarwal, Camera position estimation using 2D image dataset. Int. J. Innov. Eng. Technol. 10(2), 199–203 (2018) S. Maini, A.K. Aggarwal, Camera position estimation using 2D image dataset. Int. J. Innov. Eng. Technol. 10(2), 199–203 (2018)
27.
Zurück zum Zitat P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. on Fuzzy Syst. 22(6), 1515–1525 (2014)CrossRef P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. on Fuzzy Syst. 22(6), 1515–1525 (2014)CrossRef
28.
Zurück zum Zitat J.M. Mendel, R.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRef J.M. Mendel, R.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRef
29.
Zurück zum Zitat Y.T. Peng, S.W. Huang, Image impulse noise removal using cascaded filtering based on overlapped adaptive gaussian smoothing and convolutional refinement networks. IEEE Open J. Comput. Soc. 2, 382–392 (2021)CrossRef Y.T. Peng, S.W. Huang, Image impulse noise removal using cascaded filtering based on overlapped adaptive gaussian smoothing and convolutional refinement networks. IEEE Open J. Comput. Soc. 2, 382–392 (2021)CrossRef
30.
Zurück zum Zitat I. Pitas, A. Venetsanpou, Nonlinear digital filters: principles and application (Kluwer, Norwell. MA, 1990)CrossRef I. Pitas, A. Venetsanpou, Nonlinear digital filters: principles and application (Kluwer, Norwell. MA, 1990)CrossRef
31.
Zurück zum Zitat T. Radhika, A. Chandrasekar, V. Vijayakumar, Q. Zhu, Analysis of Markovian jump stochastic Cohen-Grossberg bam neural networks with time delays for exponential input-to-state stability. Neural. Process. Lett. 55, 11055–11072 (2023)CrossRef T. Radhika, A. Chandrasekar, V. Vijayakumar, Q. Zhu, Analysis of Markovian jump stochastic Cohen-Grossberg bam neural networks with time delays for exponential input-to-state stability. Neural. Process. Lett. 55, 11055–11072 (2023)CrossRef
32.
Zurück zum Zitat A. Rafiee, M. Farhang, A deep convolutional neural network for salt-and-pepper noise removal using selective convolutional blocks. Appl. Soft Comput. 145, 110535 (2023)CrossRef A. Rafiee, M. Farhang, A deep convolutional neural network for salt-and-pepper noise removal using selective convolutional blocks. Appl. Soft Comput. 145, 110535 (2023)CrossRef
33.
Zurück zum Zitat J. Raja, K. Moorthi, A. Rajendran, De-noising of salt and pepper noise using deep learning-based alpha-guided grey wolf optimization. Appl. Soft Comput. 130, 109649 (2022)CrossRef J. Raja, K. Moorthi, A. Rajendran, De-noising of salt and pepper noise using deep learning-based alpha-guided grey wolf optimization. Appl. Soft Comput. 130, 109649 (2022)CrossRef
34.
Zurück zum Zitat R. Rojas, P. Rodrguez, Spatially adaptive total variation image denoising under salt and pepper noise (Proc. the Eur. Signal Process. Conf. Barcelona, Spain, 2011), pp.278–282 R. Rojas, P. Rodrguez, Spatially adaptive total variation image denoising under salt and pepper noise (Proc. the Eur. Signal Process. Conf. Barcelona, Spain, 2011), pp.278–282
35.
Zurück zum Zitat F. Russo, G. Ramponi, A fuzzy operator for the enhancement of blurred and noisy images. IEEE Trans. Image Process. 4(8), 1169–1174 (1995)CrossRef F. Russo, G. Ramponi, A fuzzy operator for the enhancement of blurred and noisy images. IEEE Trans. Image Process. 4(8), 1169–1174 (1995)CrossRef
36.
Zurück zum Zitat S. Sadrizadeh, H.O. Shahreza, F. Marvasti, Impulsive noise removal via a blind CNN enhanced by an iterative post-processing. Signal Process. 192, 108378 (2022)CrossRef S. Sadrizadeh, H.O. Shahreza, F. Marvasti, Impulsive noise removal via a blind CNN enhanced by an iterative post-processing. Signal Process. 192, 108378 (2022)CrossRef
37.
Zurück zum Zitat V. Singh, R. Dev, N. Dhar, P. Agrawal, Adaptive type-2 fuzzy approach for filtering salt and pepper noise in grayscale images. IEEE Trans. Fuzzy Syst. 26(5), 3170–3176 (2018)CrossRef V. Singh, R. Dev, N. Dhar, P. Agrawal, Adaptive type-2 fuzzy approach for filtering salt and pepper noise in grayscale images. IEEE Trans. Fuzzy Syst. 26(5), 3170–3176 (2018)CrossRef
38.
Zurück zum Zitat V. Singh, P. Agrawal, T. Sharma, N.K. Verma, Improved adaptive type-2 fuzzy filter with exclusively two fuzzy membership function for filtering salt and pepper noise. Multimed. Tools Appl. 82, 20015–20037 (2023)CrossRef V. Singh, P. Agrawal, T. Sharma, N.K. Verma, Improved adaptive type-2 fuzzy filter with exclusively two fuzzy membership function for filtering salt and pepper noise. Multimed. Tools Appl. 82, 20015–20037 (2023)CrossRef
39.
Zurück zum Zitat L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-1. Inform. Sci. 8, 199–249 (1975)MathSciNetCrossRef L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-1. Inform. Sci. 8, 199–249 (1975)MathSciNetCrossRef
40.
Zurück zum Zitat K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)MathSciNetCrossRef K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)MathSciNetCrossRef
41.
Zurück zum Zitat Z. Zhou, Cognition and removal of impulse noise with uncertainty. IEEE Trans. Image Process. 21(7), 3157–3167 (2012)MathSciNetCrossRef Z. Zhou, Cognition and removal of impulse noise with uncertainty. IEEE Trans. Image Process. 21(7), 3157–3167 (2012)MathSciNetCrossRef
Metadaten
Titel
Improved Adaptive Type-2 Fuzzy Detection and Simple Linear Regression-Based Filter for Removing Salt & Pepper Noise
verfasst von
Abhishek Kumar
Sanjeev Kumar
Asutosh Kar
Publikationsdatum
07.08.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 12/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02804-0