Skip to main content

21.09.2019

Improved Analytical Method to Investigate the Dynamic Characteristics of Composite Box Beam with Corrugated Webs

verfasst von: Yulin Feng, Lizhong Jiang, Wangbao Zhou

Erschienen in: International Journal of Steel Structures

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study establishes an improved analytical method (IAM) to investigate the dynamic characteristics of composite box beam with corrugated webs (CBBCW), and the IAM has comprehensively considered the effects of several factors, such as the shear lag, interfacial slip, shear deformation and rotational inertia of CBBCW in combination with the characteristics of CBBCW. Further, based on the Hamilton principle, the vibration differential equation and boundary conditions for CBBCW have been deduced. Finally, an IAM for calculating the dynamic characteristics of CBBCW was proposed. Based on the IAM developed in this study, the natural frequencies of multiple CBBCW cases with different spans, shear connection degrees and boundary conditions have been calculated. The results calculated by the IAM have been compared with those calculated by the finite element method and by the general beam theory. The comparison verifies the effectiveness of the IAM and obtains some conclusions that are meaningful to engineering design, i.e. the shear lag effect of CBBCW increases with increasing shear connection degree and also increases with increasing order of the vibration mode, the shear lag effect of the CBBCW is up to 6.2% in the first five orders of the vibration modes and the effect cannot be ignored. In the first- and second-order vibration modes of the CBBCW cases, the maximum interface slip effect of CBBCW is 28.42% and therefore cannot be ignored. On the other hand, the shear lag effect of CBBCW is usually lower than those of ordinary composite box beam with the same web thickness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chen, X., Li, Z., Au, F., & Jiang, R. (2017). Flexural vibration of prestressed concrete bridges with corrugated steel webs. International Journal of Structural Stability and Dynamics,17(02), 1750023.MathSciNetCrossRef Chen, X., Li, Z., Au, F., & Jiang, R. (2017). Flexural vibration of prestressed concrete bridges with corrugated steel webs. International Journal of Structural Stability and Dynamics,17(02), 1750023.MathSciNetCrossRef
Zurück zum Zitat Chen, S., Tian, Z., & Gui, S. (2016). Shear lag effect of a single-box multi-cell girder with corrugated steel webs. Journal of Highway and Transportation Research and Development,10(1), 33–40. Chen, S., Tian, Z., & Gui, S. (2016). Shear lag effect of a single-box multi-cell girder with corrugated steel webs. Journal of Highway and Transportation Research and Development,10(1), 33–40.
Zurück zum Zitat Chen, S., & Wang, X. (2012). Finite element analysis of distortional lateral buckling of continuous composite beams with transverse web stiffeners. Advances in Structural Engineering,15(9), 1607–1616.CrossRef Chen, S., & Wang, X. (2012). Finite element analysis of distortional lateral buckling of continuous composite beams with transverse web stiffeners. Advances in Structural Engineering,15(9), 1607–1616.CrossRef
Zurück zum Zitat Cheng, J., & Yao, H. (2016). Simplified method for predicting the deflections of composite box girders. Engineering Structures,128, 256–264.CrossRef Cheng, J., & Yao, H. (2016). Simplified method for predicting the deflections of composite box girders. Engineering Structures,128, 256–264.CrossRef
Zurück zum Zitat Deng, Z., Hu, Q., Zeng, J., Xiang, P., & Xu, C. (2017). Structural performance of steel-truss-reinforced composite joints under cyclic loading. Proceedings of the Institution of Civil Engineers-Structures and Buildings,171, 1–19. Deng, Z., Hu, Q., Zeng, J., Xiang, P., & Xu, C. (2017). Structural performance of steel-truss-reinforced composite joints under cyclic loading. Proceedings of the Institution of Civil Engineers-Structures and Buildings,171, 1–19.
Zurück zum Zitat Elamary, A., Ahmed, M. M., & Mohmoud, A. M. (2017). Flexural behaviour and capacity of reinforced concrete–steel composite beams with corrugated web and top steel flange. Engineering Structures,135, 136–148.CrossRef Elamary, A., Ahmed, M. M., & Mohmoud, A. M. (2017). Flexural behaviour and capacity of reinforced concrete–steel composite beams with corrugated web and top steel flange. Engineering Structures,135, 136–148.CrossRef
Zurück zum Zitat He, J., Liu, Y., Chen, A., Wang, D., & Yoda, T. (2014). Bending behavior of concrete-encased composite I-girder with corrugated steel web. Thin-Walled Structures,74, 70–84.CrossRef He, J., Liu, Y., Chen, A., Wang, D., & Yoda, T. (2014). Bending behavior of concrete-encased composite I-girder with corrugated steel web. Thin-Walled Structures,74, 70–84.CrossRef
Zurück zum Zitat He, J., Liu, Y., Chen, A., & Yoda, T. (2012a). Mechanical behavior and analysis of composite bridges with corrugated steel webs: State-of-the-art. International Journal of Steel Structures,12(3), 321–338.CrossRef He, J., Liu, Y., Chen, A., & Yoda, T. (2012a). Mechanical behavior and analysis of composite bridges with corrugated steel webs: State-of-the-art. International Journal of Steel Structures,12(3), 321–338.CrossRef
Zurück zum Zitat He, J., Liu, Y., Chen, A., & Yoda, T. (2012b). Shear behavior of partially encased composite I-girder with corrugated steel web: Experimental study. Journal of Constructional Steel Research,77, 193–209.CrossRef He, J., Liu, Y., Chen, A., & Yoda, T. (2012b). Shear behavior of partially encased composite I-girder with corrugated steel web: Experimental study. Journal of Constructional Steel Research,77, 193–209.CrossRef
Zurück zum Zitat He, J., Liu, Y., Lin, Z., Chen, A., & Yoda, T. (2012c). Shear behavior of partially encased composite I-girder with corrugated steel web: Numerical study. Journal of Constructional Steel Research,79, 166–182.CrossRef He, J., Liu, Y., Lin, Z., Chen, A., & Yoda, T. (2012c). Shear behavior of partially encased composite I-girder with corrugated steel web: Numerical study. Journal of Constructional Steel Research,79, 166–182.CrossRef
Zurück zum Zitat Hu, Z., & Chen, X. (2009). Finite element analysis on shear-lag effect in curved continuous box girder with corrugated steel webs. In ICCTP 2009, critical issues in transportation systems planning, development, and management. Hu, Z., & Chen, X. (2009). Finite element analysis on shear-lag effect in curved continuous box girder with corrugated steel webs. In ICCTP 2009, critical issues in transportation systems planning, development, and management.
Zurück zum Zitat Jiang, L., Feng, Y., Zhou, W., & He, B. (2018). Analysis on natural vibration characteristics of steel-concrete composite truss beam. Steel and Composite Structures,26(1), 79–87. Jiang, L., Feng, Y., Zhou, W., & He, B. (2018). Analysis on natural vibration characteristics of steel-concrete composite truss beam. Steel and Composite Structures,26(1), 79–87.
Zurück zum Zitat Jiang, R., Wu, Q., Xiao, Y., Yi, X., & Gai, W. (2014). Study on shear lag effect of a pc box girder bridge with corrugated steel webs under self-weight. Applied Mechanics and Materials,638, 1092–1098.CrossRef Jiang, R., Wu, Q., Xiao, Y., Yi, X., & Gai, W. (2014). Study on shear lag effect of a pc box girder bridge with corrugated steel webs under self-weight. Applied Mechanics and Materials,638, 1092–1098.CrossRef
Zurück zum Zitat Johnson, R. P., Cafolla, J., & Bernard, C. (1997). Corrugated webs in plate girders for bridges. Proceedings of the Institution of Civil Engineers-Structures and Buildings,122(2), 157–164.CrossRef Johnson, R. P., Cafolla, J., & Bernard, C. (1997). Corrugated webs in plate girders for bridges. Proceedings of the Institution of Civil Engineers-Structures and Buildings,122(2), 157–164.CrossRef
Zurück zum Zitat Kashefi, K., Sheikh, A. H., & Griffith, M. C. (2017). Static and vibration characteristics of thin-walled box beams: An experimental investigation. Advances in Structural Engineering,20, 136.CrossRef Kashefi, K., Sheikh, A. H., & Griffith, M. C. (2017). Static and vibration characteristics of thin-walled box beams: An experimental investigation. Advances in Structural Engineering,20, 136.CrossRef
Zurück zum Zitat Kim, B. G., Wimer, M. R., & Sause, R. (2005). Concrete-filled rectangular tubular flange girders with flat or corrugated webs. International Journal of Steel Structures,5, 337–348. Kim, B. G., Wimer, M. R., & Sause, R. (2005). Concrete-filled rectangular tubular flange girders with flat or corrugated webs. International Journal of Steel Structures,5, 337–348.
Zurück zum Zitat Lai, Z., Jiang, L., Zhou, W., & Chai, X. (2017). Improved finite beam element method to analyze the natural vibration of steel-concrete composite truss beam. Shock and Vibration,2017, 1–12.CrossRef Lai, Z., Jiang, L., Zhou, W., & Chai, X. (2017). Improved finite beam element method to analyze the natural vibration of steel-concrete composite truss beam. Shock and Vibration,2017, 1–12.CrossRef
Zurück zum Zitat Lho, S. H., Lee, C. H., Oh, J. T., Ju, Y. K., & Kim, S. D. (2014). Flexural capacity of plate girders with very slender corrugated webs. International Journal of Steel Structures,14(4), 731–744.CrossRef Lho, S. H., Lee, C. H., Oh, J. T., Ju, Y. K., & Kim, S. D. (2014). Flexural capacity of plate girders with very slender corrugated webs. International Journal of Steel Structures,14(4), 731–744.CrossRef
Zurück zum Zitat Li, L., Peng, K., & Wang, W. (2009). Theoretical and experimental study on shear lag effect of composite box girder with corrugated steel webs. Journal of Highway and Transportation Research and Development,4, 78–83. Li, L., Peng, K., & Wang, W. (2009). Theoretical and experimental study on shear lag effect of composite box girder with corrugated steel webs. Journal of Highway and Transportation Research and Development,4, 78–83.
Zurück zum Zitat Ng, M., & Ronagh, H. R. (2004). An analytical solution for the elastic lateral-distortional buckling of i-section beams. Advances in Structural Engineering,7(2), 189–200.CrossRef Ng, M., & Ronagh, H. R. (2004). An analytical solution for the elastic lateral-distortional buckling of i-section beams. Advances in Structural Engineering,7(2), 189–200.CrossRef
Zurück zum Zitat Nguyen, N. D., Nguyen-Van, H., Han, S. Y., Choi, J. H., & Kang, Y. J. (2013). Elastic lateral-torsional buckling of tapered i-girder with corrugated webs. International Journal of Steel Structures,13(1), 71–79.CrossRef Nguyen, N. D., Nguyen-Van, H., Han, S. Y., Choi, J. H., & Kang, Y. J. (2013). Elastic lateral-torsional buckling of tapered i-girder with corrugated webs. International Journal of Steel Structures,13(1), 71–79.CrossRef
Zurück zum Zitat Nie, J., Cai, C. S., & Wang, T. (2005). Stiffness and capacity of steel-concrete composite beams with profiled sheeting. Engineering Structures,27(7), 1074–1085.CrossRef Nie, J., Cai, C. S., & Wang, T. (2005). Stiffness and capacity of steel-concrete composite beams with profiled sheeting. Engineering Structures,27(7), 1074–1085.CrossRef
Zurück zum Zitat Nie, J., Cai, C., Zhou, T., & Li, Y. (2007). Experimental and analytical study of prestressed steel-concrete composite beams considering slip effect. Journal of Structural Engineering,133(4), 530–540.CrossRef Nie, J., Cai, C., Zhou, T., & Li, Y. (2007). Experimental and analytical study of prestressed steel-concrete composite beams considering slip effect. Journal of Structural Engineering,133(4), 530–540.CrossRef
Zurück zum Zitat Oh, J., Lee, D., & Kim, K. (2012). Accordion effect of prestressed steel beams with corrugated webs. Thin-Walled Structures,57, 49–61.CrossRef Oh, J., Lee, D., & Kim, K. (2012). Accordion effect of prestressed steel beams with corrugated webs. Thin-Walled Structures,57, 49–61.CrossRef
Zurück zum Zitat Qi, J., & Jiang, L. Z. (2010). Effects of interface slip and semi-rigid joint on elastic seismic response of steel-concrete composite frames. Journal of Central South University,17(6), 1327–1335.CrossRef Qi, J., & Jiang, L. Z. (2010). Effects of interface slip and semi-rigid joint on elastic seismic response of steel-concrete composite frames. Journal of Central South University,17(6), 1327–1335.CrossRef
Zurück zum Zitat Qiao, P. (2013). Influence of shear lag and shear deformation effects on deflection of composite box girder with corrugated steel webs. Advanced Materials Research. Trans Tech Publications,671, 985–990.CrossRef Qiao, P. (2013). Influence of shear lag and shear deformation effects on deflection of composite box girder with corrugated steel webs. Advanced Materials Research. Trans Tech Publications,671, 985–990.CrossRef
Zurück zum Zitat Samanta, A., & Mukhopadhyay, M. (1999). Finite element static and dynamic analyses of folded plates. Engineering Structures,21(3), 277–287.CrossRef Samanta, A., & Mukhopadhyay, M. (1999). Finite element static and dynamic analyses of folded plates. Engineering Structures,21(3), 277–287.CrossRef
Zurück zum Zitat Wang, Z., Tan, L., & Wang, Q. (2013). Fatigue strength evaluation of welded structural details in corrugated steel web girders. International Journal of Steel Structures,13(4), 707–721.CrossRef Wang, Z., Tan, L., & Wang, Q. (2013). Fatigue strength evaluation of welded structural details in corrugated steel web girders. International Journal of Steel Structures,13(4), 707–721.CrossRef
Zurück zum Zitat Wu, W., Ye, J., & Wan, S. (2003). Experiment study of shear lag effect of composite box girders with corrugated steel web under the symmetrical load. China Journal of Highway and Transport,16(2), 48–51. Wu, W., Ye, J., & Wan, S. (2003). Experiment study of shear lag effect of composite box girders with corrugated steel web under the symmetrical load. China Journal of Highway and Transport,16(2), 48–51.
Zurück zum Zitat Xiang, P., Deng, Z. H., Su, Y. S., Wang, H. P., & Wan, Y. F. (2017). Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading. Advances in Structural Engineering,20(3), 446–460.CrossRef Xiang, P., Deng, Z. H., Su, Y. S., Wang, H. P., & Wan, Y. F. (2017). Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading. Advances in Structural Engineering,20(3), 446–460.CrossRef
Zurück zum Zitat Zhang, Y. J., Huang, P. M., Di, J., & Zhou, X. (2008). Free vibration characteristics and experiment study of composite box girder with corrugated steel webs. Journal of Traffic and Transportation Engineering,5, 76–80. Zhang, Y. J., Huang, P. M., Di, J., & Zhou, X. (2008). Free vibration characteristics and experiment study of composite box girder with corrugated steel webs. Journal of Traffic and Transportation Engineering,5, 76–80.
Zurück zum Zitat Zhou, W., Jiang, L., Huang, Z., & Li, S. (2016a). Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip. Steel and Composite Structures,20(5), 1023–1042.CrossRef Zhou, W., Jiang, L., Huang, Z., & Li, S. (2016a). Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip. Steel and Composite Structures,20(5), 1023–1042.CrossRef
Zurück zum Zitat Zhou, W. B., Jiang, L. Z., Li, S. J., & Kong, F. (2016b). Distortional buckling analysis of I-steel concrete composite beam considering shear deformation. International Journal of Structural Stability and Dynamics,16(8), 1–22.MathSciNetCrossRef Zhou, W. B., Jiang, L. Z., Li, S. J., & Kong, F. (2016b). Distortional buckling analysis of I-steel concrete composite beam considering shear deformation. International Journal of Structural Stability and Dynamics,16(8), 1–22.MathSciNetCrossRef
Zurück zum Zitat Zhou, W., Jiang, L., Liu, Z., & Liu, X. (2012). Closed-form solution to thin-walled box girders considering effects of shear deformation and shear lag. Journal of central south university,19(9), 2650–2655.CrossRef Zhou, W., Jiang, L., Liu, Z., & Liu, X. (2012). Closed-form solution to thin-walled box girders considering effects of shear deformation and shear lag. Journal of central south university,19(9), 2650–2655.CrossRef
Zurück zum Zitat Zhou, M., Liu, Z., Zhang, J., & An, L. (2016c). Deformation analysis of a non-prismatic beam with corrugated steel webs in the elastic stage. Thin-Walled Structures,109, 260–270.CrossRef Zhou, M., Liu, Z., Zhang, J., & An, L. (2016c). Deformation analysis of a non-prismatic beam with corrugated steel webs in the elastic stage. Thin-Walled Structures,109, 260–270.CrossRef
Metadaten
Titel
Improved Analytical Method to Investigate the Dynamic Characteristics of Composite Box Beam with Corrugated Webs
verfasst von
Yulin Feng
Lizhong Jiang
Wangbao Zhou
Publikationsdatum
21.09.2019
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-019-00278-4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.