Skip to main content
Erschienen in: Wireless Personal Communications 3/2018

26.10.2017

Improved Cluster Based Data Gathering Using Ant Lion Optimization in Wireless Sensor Networks

verfasst von: G. Yogarajan, T. Revathi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks play a vital role in this digital world through various applications in several domains. The sensor networks are heavily energy constrained due to limited battery power. Therefore, the energy has to be optimally exploited to improve the lifetime and throughput of the network. Among the various existing approaches, cluster based routing algorithms are more popular for its balanced and less energy consumption throughout the communication network. Improper clustering often results in numerous individual nodes (sensor nodes which are not a part of any clusters). The individual nodes will send their information to the base station with high transmission power which heavily impacts the lifetime of the sensor network. Hence, a heuristic Ant Lion Optimization clustering algorithm for wireless sensor network is proposed in this paper. In the proposed work, the cluster head selection is modeled as a fitness function of the Antlion optimization algorithm, which improves the network performance. Also, a Discrete Ant Lion Optimization algorithm is applied to find the optimal data gathering tour for a mobile sink with minimal data collection tour length. The Discrete Ant Lion optimization algorithm computes the optimal order for the mobile sink to visit the selected cluster head nodes and collects their data. The simulation results show that the proposed clustering scheme improves the network lifetime, network throughput and it also reduces the number of individual nodes when compared to existing algorithms. Also, the proposed cluster-based mobile data gathering using the Ant Lion Optimization algorithm produces an optimal tour for the mobile sink to collect data from the cluster head node with minimum data collection tour distance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef
2.
Zurück zum Zitat Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: Applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19–31.CrossRef Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: Applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19–31.CrossRef
3.
Zurück zum Zitat Xu, G., Shen, W., & Wang, X. (2014). Applications of wireless sensor networks in marine environment monitoring: A survey. Sensors, 14(9), 16932–16954.CrossRef Xu, G., Shen, W., & Wang, X. (2014). Applications of wireless sensor networks in marine environment monitoring: A survey. Sensors, 14(9), 16932–16954.CrossRef
4.
Zurück zum Zitat Radi, M., Dezfouli, B., Abu Bakar, K., & Lee, M. (2012). Multipath routing in wireless sensor networks: survey and research challenges. Sensors (Basel), 12(1), 650–685.CrossRef Radi, M., Dezfouli, B., Abu Bakar, K., & Lee, M. (2012). Multipath routing in wireless sensor networks: survey and research challenges. Sensors (Basel), 12(1), 650–685.CrossRef
5.
Zurück zum Zitat Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30, 2826–2841.CrossRef Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30, 2826–2841.CrossRef
6.
Zurück zum Zitat Gao, Y., Wkram, C. H., Duan, J., & Chou, J. (2015). A Novel energy-aware distributed clustering algorithm for heterogeneous wireless sensor networks in the mobile environment. Sensors, 15(12), 31108–31124.CrossRef Gao, Y., Wkram, C. H., Duan, J., & Chou, J. (2015). A Novel energy-aware distributed clustering algorithm for heterogeneous wireless sensor networks in the mobile environment. Sensors, 15(12), 31108–31124.CrossRef
7.
Zurück zum Zitat Ghiasi, S., Srivastava, A., Yang, X., & Sarrafzadeh, M. (2002). Optimal energy aware clustering in sensor networks. Sensors, 2(7), 258–269.CrossRef Ghiasi, S., Srivastava, A., Yang, X., & Sarrafzadeh, M. (2002). Optimal energy aware clustering in sensor networks. Sensors, 2(7), 258–269.CrossRef
8.
Zurück zum Zitat Ye, Z., & Mohamadian, H. (2014). Adaptive clustering based dynamic routing of wireless sensor networks via generalized ant colony optimization. In Proceedings of IERI procedia (pp. 2–10). Ye, Z., & Mohamadian, H. (2014). Adaptive clustering based dynamic routing of wireless sensor networks via generalized ant colony optimization. In Proceedings of IERI procedia (pp. 2–10).
9.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of 33rd annual Hawaii international conference on system sciences (pp. 4–7). Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of 33rd annual Hawaii international conference on system sciences (pp. 4–7).
10.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
11.
Zurück zum Zitat Kumar, N., & Kaur, J. (2011). Improved LEACH protocol for wireless sensor networks. In Proceedings of the 7th international conference on wireless communications, networking and mobile computing (pp. 1–5). Kumar, N., & Kaur, J. (2011). Improved LEACH protocol for wireless sensor networks. In Proceedings of the 7th international conference on wireless communications, networking and mobile computing (pp. 1–5).
12.
Zurück zum Zitat Jian-wu, Z., Ying-ying, J., Ji-ji, Z., & Cheng-lei, Y. (2008). A weighted clustering algorithm based routing protocol in wireless sensor networks. In Proceedings of ISECS international colloquium on computing, communication, and control (pp. 599–602). Jian-wu, Z., Ying-ying, J., Ji-ji, Z., & Cheng-lei, Y. (2008). A weighted clustering algorithm based routing protocol in wireless sensor networks. In Proceedings of ISECS international colloquium on computing, communication, and control (pp. 599–602).
14.
Zurück zum Zitat Gupta, S. K., & Jana, P. K. (2015). Energy efficient clustering and routing algorithms for wireless sensor networks: GA based approach. Wireless Personal Communications, 83(3), 2403–2423.CrossRef Gupta, S. K., & Jana, P. K. (2015). Energy efficient clustering and routing algorithms for wireless sensor networks: GA based approach. Wireless Personal Communications, 83(3), 2403–2423.CrossRef
15.
Zurück zum Zitat Wang, X., Wang, S., & Ma, J. J. (2007). An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors, 7, 354–370.CrossRef Wang, X., Wang, S., & Ma, J. J. (2007). An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors, 7, 354–370.CrossRef
16.
Zurück zum Zitat RejinaParvin, C., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors Journal, 15(8), 4264–4274.CrossRef RejinaParvin, C., & Vasanthanayaki, C. (2015). Particle swarm optimization-based clustering by preventing residual nodes in wireless sensor networks. IEEE Sensors Journal, 15(8), 4264–4274.CrossRef
17.
Zurück zum Zitat Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRef Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRef
18.
Zurück zum Zitat Yogarajan, G., & Revathi, T. (2016). A discrete ant lion optimization (DALO) algorithm for solving data gathering tour problem in wireless sensor networks. Middle-East Journal of Scientific Research, 24(10), 3113–3120. Yogarajan, G., & Revathi, T. (2016). A discrete ant lion optimization (DALO) algorithm for solving data gathering tour problem in wireless sensor networks. Middle-East Journal of Scientific Research, 24(10), 3113–3120.
20.
Zurück zum Zitat Yogarajan, G., & Revathi, T. (2017). Nature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networks. Wireless Networks. doi:10.1007/s11276-017-1517-y. Yogarajan, G., & Revathi, T. (2017). Nature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networks. Wireless Networks. doi:10.​1007/​s11276-017-1517-y.
21.
Zurück zum Zitat Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2011). The traveling salesman problem: A computational study. Princeton, NJ: Princeton University Press.MATH Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2011). The traveling salesman problem: A computational study. Princeton, NJ: Princeton University Press.MATH
22.
Zurück zum Zitat Skiena, S. S. (1997). Algorithm design manual. New York: Springer.MATH Skiena, S. S. (1997). Algorithm design manual. New York: Springer.MATH
Metadaten
Titel
Improved Cluster Based Data Gathering Using Ant Lion Optimization in Wireless Sensor Networks
verfasst von
G. Yogarajan
T. Revathi
Publikationsdatum
26.10.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4996-3

Weitere Artikel der Ausgabe 3/2018

Wireless Personal Communications 3/2018 Zur Ausgabe

Neuer Inhalt