Skip to main content

07.12.2024

Improved Non-local Means Using Structural Similarity for Image Denoising

verfasst von: Xiaobo Zhang

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Non-local means (NLM) method is one of the most notable methods in the field of image processing. At first, it is proposed for image denoising. The denoised pixel is obtained by the weighted average of neighboring pixels. Usually, the weight is computed by using the mean square error (MSE). This weight can be called MSE-Weight. In recent years, structural similarity (SSIM) has also been used to design weights in NLM. Unlike them, this paper proposes a novel approach for computing weights by integrating SSIM into MSE-Weight. The advantage of SSIM and MSE is fully utilized. In the two stages of pre-filtering and denoising in the proposed method, the weight of the center pixel in the neighborhood (CW) is carefully selected and designed. The weight in denoising stage is called the MSE and SSIM weight (MSE-SSIM-Weight), and flexibly combines MSE and SSIM. Test results show that the proposed method achieves an average increase of 0.80 dB in peak signal-to-noise ratio (PSNR) and 0.0239 in SSIM compared with the closely related Max-NLM (NLM that takes the maximum weight of neighboring pixels as CW). The comparison with other methods also demonstrates the superior performance of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat V. Bruni, D. Panella, D. Vitulano, Non-local means image denoising using noise-adaptive SSIM, in 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2326–2330 (2015) V. Bruni, D. Panella, D. Vitulano, Non-local means image denoising using noise-adaptive SSIM, in 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2326–2330 (2015)
2.
Zurück zum Zitat A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 60–65 (2005) A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2, 60–65 (2005)
3.
Zurück zum Zitat K. Dabov, A. Foi, V. Katkovnik, Image denoising by sparse 3-D transformdomain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRef K. Dabov, A. Foi, V. Katkovnik, Image denoising by sparse 3-D transformdomain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRef
4.
Zurück zum Zitat A.A. Dovganich, A.S. Krylov, A nonlocal image denoising algorithm using the structural similarity metric. Program Comput Soft. 45, 141–146 (2019)CrossRef A.A. Dovganich, A.S. Krylov, A nonlocal image denoising algorithm using the structural similarity metric. Program Comput Soft. 45, 141–146 (2019)CrossRef
5.
6.
Zurück zum Zitat S. Ghael, A.M. Sayeed, R.G.Baraniuk, Improved wavelet denoising via empirical Wiener filtering, in SPIE Technical Conference on Wavelet Applications in Signal Processing, pp. 1–12 (1997) S. Ghael, A.M. Sayeed, R.G.Baraniuk, Improved wavelet denoising via empirical Wiener filtering, in SPIE Technical Conference on Wavelet Applications in Signal Processing, pp. 1–12 (1997)
7.
Zurück zum Zitat S. Ghosh, K.N. Chaudhury, Fast separable nonlocal means. J. Electron. Imaging 25(2), 023026 (2016)CrossRef S. Ghosh, K.N. Chaudhury, Fast separable nonlocal means. J. Electron. Imaging 25(2), 023026 (2016)CrossRef
8.
Zurück zum Zitat S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vision 121(2), 183–208 (2017)CrossRef S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vision 121(2), 183–208 (2017)CrossRef
10.
Zurück zum Zitat J. Meng, F. Wang, J. Liu, Learnable nonlocal self-similarity of deep features for image denoising. SIAM J. Imaging Sci. 17(1), 441–475 (2024)MathSciNetCrossRef J. Meng, F. Wang, J. Liu, Learnable nonlocal self-similarity of deep features for image denoising. SIAM J. Imaging Sci. 17(1), 441–475 (2024)MathSciNetCrossRef
11.
Zurück zum Zitat M.P. Nguyen, S.Y. Chun, Bounded self-weights estimation method for non-local means image denoising using minimax estimators. IEEE Trans. Image Process. 26(4), 1637–1649 (2017)MathSciNetCrossRef M.P. Nguyen, S.Y. Chun, Bounded self-weights estimation method for non-local means image denoising using minimax estimators. IEEE Trans. Image Process. 26(4), 1637–1649 (2017)MathSciNetCrossRef
12.
Zurück zum Zitat P. Qiao, Y. Dou, W. Feng, R. Li, Y. Chen, Learning non-local image diffusion for image denoising, in Proceedings of the 25th ACM international conference on Multimedia, pp. 1847–1855 (2017) P. Qiao, Y. Dou, W. Feng, R. Li, Y. Chen, Learning non-local image diffusion for image denoising, in Proceedings of the 25th ACM international conference on Multimedia, pp. 1847–1855 (2017)
13.
Zurück zum Zitat A. Rehman, Z. Wang, SSIM-based non-local means image denoising, in 2011 18th IEEE International Conference on Image Processing, pp. 217–220 (2011) A. Rehman, Z. Wang, SSIM-based non-local means image denoising, in 2011 18th IEEE International Conference on Image Processing, pp. 217–220 (2011)
14.
Zurück zum Zitat L. Shi, A geometric structure based non local mean image denoising algorithm. IEEE Access 11, 91145–92256 (2023)CrossRef L. Shi, A geometric structure based non local mean image denoising algorithm. IEEE Access 11, 91145–92256 (2023)CrossRef
15.
Zurück zum Zitat D. Van De Ville, M. Kocher, SURE-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009)CrossRef D. Van De Ville, M. Kocher, SURE-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009)CrossRef
16.
Zurück zum Zitat Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(1), 600–612 (2004)CrossRef Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(1), 600–612 (2004)CrossRef
17.
Zurück zum Zitat Y. Wu, B. Tracey, P. Natarajan, J.P. Noonan, James–Stein type center pixel weights for non-local means image denoising. IEEE Signal Process. Lett. 20(4), 411–414 (2013)CrossRef Y. Wu, B. Tracey, P. Natarajan, J.P. Noonan, James–Stein type center pixel weights for non-local means image denoising. IEEE Signal Process. Lett. 20(4), 411–414 (2013)CrossRef
18.
Zurück zum Zitat Z. Zha, B. Wen, X. Yuan, J. Zhou, C. Zhu, A.C. Kot, Low-rankness guided group sparse representation for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7593–7607 (2023)CrossRef Z. Zha, B. Wen, X. Yuan, J. Zhou, C. Zhu, A.C. Kot, Low-rankness guided group sparse representation for image restoration. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7593–7607 (2023)CrossRef
19.
Zurück zum Zitat X. Zhang, A modified non-local means using bilateral thresholding for image denoising. Multimed. Tools Appl. 83(3), 7395–7416 (2024)CrossRef X. Zhang, A modified non-local means using bilateral thresholding for image denoising. Multimed. Tools Appl. 83(3), 7395–7416 (2024)CrossRef
20.
Zurück zum Zitat X. Zhang, Center pixel weight based on Wiener filter for non-local means image denoising. Optik 244, 167557 (2021)CrossRef X. Zhang, Center pixel weight based on Wiener filter for non-local means image denoising. Optik 244, 167557 (2021)CrossRef
21.
Zurück zum Zitat X. Zhang, Image denoising using multidirectional gradient domain. Multimed. Tools Appl. 80(19), 29745–29763 (2021)CrossRef X. Zhang, Image denoising using multidirectional gradient domain. Multimed. Tools Appl. 80(19), 29745–29763 (2021)CrossRef
22.
Zurück zum Zitat X. Zhang, Two-step non-local means method for image denoising. Multidim. Syst. Sign. Process. 33(2), 341–366 (2022)MathSciNetCrossRef X. Zhang, Two-step non-local means method for image denoising. Multidim. Syst. Sign. Process. 33(2), 341–366 (2022)MathSciNetCrossRef
Metadaten
Titel
Improved Non-local Means Using Structural Similarity for Image Denoising
verfasst von
Xiaobo Zhang
Publikationsdatum
07.12.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02931-8