Skip to main content
Erschienen in: Journal of Materials Science 19/2021

02.04.2021 | Ceramics

Improved polarization retention in LiNbO3 single-crystal memory cells with enhanced etching angles

verfasst von: Yifan Chen, Xiao Zhuang, Xiaojie Chai, Xu Jiang, Jie Sun, Jun Jiang, Anquan Jiang

Erschienen in: Journal of Materials Science | Ausgabe 19/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multifunctional LiNbO3 material plays an important role in domain wall microelectronics and nonlinear optoelectronics. However, the material is hard and relatively inert, and hence is quite difficultly etched. A new oblique method to etch LiNbO3 memory cells at the surface of X-cut bulk crystals was proposed in this study. The process includes mask fabrication, oblique etching, and wet corrosion cleaning. The etching angle highly approaches 83° to achieve better polarization retention than others with etching angles of 0° and 70°. Meantime, the measured domain switching hysteresis loops become more symmetrical along the voltage axis than others with the presence of a strong imprint field. The horizontal electric field simulation along the polar Z axis exhibits the enhanced nucleating fields of the domains located at two edges of each memory cell in contact to Pt electrodes under the same applied voltage. The depolarization field was better screened in the memory with a higher etching angle. The new oblique method can improve the performance of the ferroelectric domain wall memory significantly.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu H, Bark CW, Ojos DE, Alcala J, Eom CB, Catalan G, Gruverman A (2012) Mechanical writing of ferroelectric polarization. Science 336:59–61CrossRef Lu H, Bark CW, Ojos DE, Alcala J, Eom CB, Catalan G, Gruverman A (2012) Mechanical writing of ferroelectric polarization. Science 336:59–61CrossRef
2.
Zurück zum Zitat Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M (2018) Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562:101–104CrossRef Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M (2018) Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562:101–104CrossRef
3.
Zurück zum Zitat Li Z, Huang X, Wang Y, Tang Y, Zhao X, Wang F, Wang T, Shi W, Duan Z (2020) Ferroelectric and piezoelectric response in (100)-oriented Mn-doped Bi0.5Na0.5TiO3–BaTiO3 thin films. J Mater Sci 55:8088–8094CrossRef Li Z, Huang X, Wang Y, Tang Y, Zhao X, Wang F, Wang T, Shi W, Duan Z (2020) Ferroelectric and piezoelectric response in (100)-oriented Mn-doped Bi0.5Na0.5TiO3–BaTiO3 thin films. J Mater Sci 55:8088–8094CrossRef
4.
Zurück zum Zitat Kang BS, Kim DJ, Jo JY, Noh TW, Yoon JG, Song TK, Lee YK, Shin S, Park YS (2004) Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes. Appl Phys Lett 84:3127–3129CrossRef Kang BS, Kim DJ, Jo JY, Noh TW, Yoon JG, Song TK, Lee YK, Shin S, Park YS (2004) Polarization retention in Pb(Zr0.4Ti0.6)O3 capacitors with IrO2 top electrodes. Appl Phys Lett 84:3127–3129CrossRef
5.
Zurück zum Zitat Liu XB, Ding NF, Jiang AQ, Yang PX (2012) The improved polarization retention through high-field charge injection in highly strained BiFeO3 thin films with preferred domain orientations. Appl Phys Lett 100:132901CrossRef Liu XB, Ding NF, Jiang AQ, Yang PX (2012) The improved polarization retention through high-field charge injection in highly strained BiFeO3 thin films with preferred domain orientations. Appl Phys Lett 100:132901CrossRef
6.
Zurück zum Zitat Xu SQ, Zhang Y, Guo HZ, Geng WP, Bai ZL, Jiang AQ (2017) Improved polarization retention of BiFeO3 thin films using GdScO3 (110) substrates. Chin Phys Lett 34:027701CrossRef Xu SQ, Zhang Y, Guo HZ, Geng WP, Bai ZL, Jiang AQ (2017) Improved polarization retention of BiFeO3 thin films using GdScO3 (110) substrates. Chin Phys Lett 34:027701CrossRef
7.
Zurück zum Zitat Wang C, Xiong X, Andrade N, Venkataraman V, Ren XF, Guo GC, Lončar M (2017) Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt Expr 25:6963–6973CrossRef Wang C, Xiong X, Andrade N, Venkataraman V, Ren XF, Guo GC, Lončar M (2017) Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt Expr 25:6963–6973CrossRef
8.
Zurück zum Zitat Poberaj G, Hu H, Sohler W, Günter P (2012) Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev 6:488–503CrossRef Poberaj G, Hu H, Sohler W, Günter P (2012) Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev 6:488–503CrossRef
9.
Zurück zum Zitat Schröder M, Haußmann A, Thiessen A, Soergel E, Woike T, Eng LM (2012) Conducting domain walls in lithium niobate single crystals. Adv Funct Mater 22:3936–3944CrossRef Schröder M, Haußmann A, Thiessen A, Soergel E, Woike T, Eng LM (2012) Conducting domain walls in lithium niobate single crystals. Adv Funct Mater 22:3936–3944CrossRef
10.
Zurück zum Zitat Wang C, Jiang J, Chai X, Lian J, Hu X, Jiang AQ (2020) Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Appl Mater Interfaces 12:44998–45004CrossRef Wang C, Jiang J, Chai X, Lian J, Hu X, Jiang AQ (2020) Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Appl Mater Interfaces 12:44998–45004CrossRef
11.
Zurück zum Zitat Jiang AQ, Geng WP, Lv P, Hong JW, Jiang J, Wang C, Chai XJ, Lian JW, Zhang Y, Huang R, Zhang DW, Scott JF, Hwang CS (2020) Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat Mater 19:1188–1194CrossRef Jiang AQ, Geng WP, Lv P, Hong JW, Jiang J, Wang C, Chai XJ, Lian JW, Zhang Y, Huang R, Zhang DW, Scott JF, Hwang CS (2020) Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat Mater 19:1188–1194CrossRef
12.
Zurück zum Zitat Chai X, Jiang J, Zhang Q, Hou X, Meng F, Wang J, Gu L, Zhang DW, Jiang AQ (2020) Nonvolatile ferroelectric field-effect transistors. Nat Commun 11:2811CrossRef Chai X, Jiang J, Zhang Q, Hou X, Meng F, Wang J, Gu L, Zhang DW, Jiang AQ (2020) Nonvolatile ferroelectric field-effect transistors. Nat Commun 11:2811CrossRef
13.
Zurück zum Zitat McConville JPV, Lu H, Wang B, Tan Y, Cochard C, Conroy M, Moore K, Harvey A, Bangert U, Chen LQ, Gruverman A, Gregg JM (2020) Ferroelectric domain wall memristor. Adv Funct Mater 30:2000109CrossRef McConville JPV, Lu H, Wang B, Tan Y, Cochard C, Conroy M, Moore K, Harvey A, Bangert U, Chen LQ, Gruverman A, Gregg JM (2020) Ferroelectric domain wall memristor. Adv Funct Mater 30:2000109CrossRef
14.
Zurück zum Zitat Levy M, Osgood RM, Liu R, Cross LE, Cargill GS, Kumar A, Bakhru H (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73:2293–2295CrossRef Levy M, Osgood RM, Liu R, Cross LE, Cargill GS, Kumar A, Bakhru H (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73:2293–2295CrossRef
15.
Zurück zum Zitat Jiang AQ, Zhang Y (2019) Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Mater 11:2CrossRef Jiang AQ, Zhang Y (2019) Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Mater 11:2CrossRef
16.
Zurück zum Zitat Lacour F, Courjal N, Bernal MP, Sabac A, Bainier C, Spajer M (2005) Nanostructuring lithium niobate substrates by focused ion beam milling. Opt Mater 27:1421–1425CrossRef Lacour F, Courjal N, Bernal MP, Sabac A, Bainier C, Spajer M (2005) Nanostructuring lithium niobate substrates by focused ion beam milling. Opt Mater 27:1421–1425CrossRef
17.
Zurück zum Zitat Jiang J, Meng XJ, Geng DQ, Jiang AQ (2015) Accelerated domain switching speed in single-crystal LiNbO3 thin films. J Appl Phys 117:104101CrossRef Jiang J, Meng XJ, Geng DQ, Jiang AQ (2015) Accelerated domain switching speed in single-crystal LiNbO3 thin films. J Appl Phys 117:104101CrossRef
18.
Zurück zum Zitat Jackel JL, Howard RE, Hu EL, Lyman SP (1981) Reactive ion etching of LiNbO3. Appl Phys Lett 38:907–909CrossRef Jackel JL, Howard RE, Hu EL, Lyman SP (1981) Reactive ion etching of LiNbO3. Appl Phys Lett 38:907–909CrossRef
19.
Zurück zum Zitat Hines DS, Williams KE (2002) Patterning of wave guides in LiNbO3 using ion beam etching and reactive ion beam etching. J Vac Sci Technol A 20:1072–1075CrossRef Hines DS, Williams KE (2002) Patterning of wave guides in LiNbO3 using ion beam etching and reactive ion beam etching. J Vac Sci Technol A 20:1072–1075CrossRef
20.
Zurück zum Zitat Mailis S, Brown PT, Sones CL, Zergioti I, Eason RW (2002) Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation. Appl Phys A: Mater Sci Process 74:135–137CrossRef Mailis S, Brown PT, Sones CL, Zergioti I, Eason RW (2002) Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultraviolet laser irradiation. Appl Phys A: Mater Sci Process 74:135–137CrossRef
21.
Zurück zum Zitat Chen WL, Chen RS, Lee JH, Wang WS (1995) Lithium-niobate ridge wave-guides by nickel diffusion and proton-exchanged wet etching. IEEE Photonics Technol Lett 7:1318–1320CrossRef Chen WL, Chen RS, Lee JH, Wang WS (1995) Lithium-niobate ridge wave-guides by nickel diffusion and proton-exchanged wet etching. IEEE Photonics Technol Lett 7:1318–1320CrossRef
22.
Zurück zum Zitat Gill DM, Jacobson D, White CA, Jones CDW, Shi Y, Minford WJ, Harris A (2004) Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technique. J Lightwave Technol 22:887–894CrossRef Gill DM, Jacobson D, White CA, Jones CDW, Shi Y, Minford WJ, Harris A (2004) Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technique. J Lightwave Technol 22:887–894CrossRef
23.
Zurück zum Zitat Hartung H, Kley EB, Tünnermann A, Gischkat T, Schrempel F, Wesc W (2008) Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching. Opt Lett 33:2320–2322CrossRef Hartung H, Kley EB, Tünnermann A, Gischkat T, Schrempel F, Wesc W (2008) Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching. Opt Lett 33:2320–2322CrossRef
24.
Zurück zum Zitat Ródenas A, Nejadmalayeri AH, Jaque D, Herman P (2008) Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing. Opt Expr 16:13979–13989CrossRef Ródenas A, Nejadmalayeri AH, Jaque D, Herman P (2008) Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing. Opt Expr 16:13979–13989CrossRef
25.
Zurück zum Zitat Si G, Danner AJ, Teo SL, Teo EJ, Teng J, Bettiol AA (2011) Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling. J Vac Sci Technol B 29:021205CrossRef Si G, Danner AJ, Teo SL, Teo EJ, Teng J, Bettiol AA (2011) Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling. J Vac Sci Technol B 29:021205CrossRef
26.
Zurück zum Zitat Benchabane S, Robert L, Rauch JY, Khelif A, Laude V (2009) Highly selective electroplated nickel mask for lithium niobate dry etching. J Appl Phys 105:094109CrossRef Benchabane S, Robert L, Rauch JY, Khelif A, Laude V (2009) Highly selective electroplated nickel mask for lithium niobate dry etching. J Appl Phys 105:094109CrossRef
27.
Zurück zum Zitat Jun D, Wei J, Png CE, Guangyuan S, Son J, Yang H, Danner AJ (2012) Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas. J Vac Sci Technol B 30:011208CrossRef Jun D, Wei J, Png CE, Guangyuan S, Son J, Yang H, Danner AJ (2012) Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas. J Vac Sci Technol B 30:011208CrossRef
28.
Zurück zum Zitat Ren Z, Heard PJ, Marshall JM, Thomas PA, Yu S (2008) Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma. J Appl Phys 103:034109CrossRef Ren Z, Heard PJ, Marshall JM, Thomas PA, Yu S (2008) Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma. J Appl Phys 103:034109CrossRef
29.
Zurück zum Zitat Ulliac G, Calero V, Ndao A, Baida FI, Bernal MP (2016) Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt Mater 53:1–5CrossRef Ulliac G, Calero V, Ndao A, Baida FI, Bernal MP (2016) Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Opt Mater 53:1–5CrossRef
30.
Zurück zum Zitat Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95:690–698CrossRef Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95:690–698CrossRef
31.
Zurück zum Zitat Tybell T, Paruch P, Giamarchi T, Triscone JM (2002) Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys Rev Lett 89(9):097601CrossRef Tybell T, Paruch P, Giamarchi T, Triscone JM (2002) Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys Rev Lett 89(9):097601CrossRef
32.
Zurück zum Zitat Jiang J, Bai ZL, Chen ZH, He L, Zhang DW, Zhang QH, Shi JA, Park MH, Scott JF, Hwang CS, Jiang AQ (2018) Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat Mater 17:49–56CrossRef Jiang J, Bai ZL, Chen ZH, He L, Zhang DW, Zhang QH, Shi JA, Park MH, Scott JF, Hwang CS, Jiang AQ (2018) Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat Mater 17:49–56CrossRef
Metadaten
Titel
Improved polarization retention in LiNbO3 single-crystal memory cells with enhanced etching angles
verfasst von
Yifan Chen
Xiao Zhuang
Xiaojie Chai
Xu Jiang
Jie Sun
Jun Jiang
Anquan Jiang
Publikationsdatum
02.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06040-8

Weitere Artikel der Ausgabe 19/2021

Journal of Materials Science 19/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.