Skip to main content
Erschienen in: Journal of Materials Science 1/2019

29.08.2018 | Energy materials

Improved rate performance and cycling stability of graphitized mesoporous carbon as anode materials for lithium-ion batteries

verfasst von: Jing Zhang, Tianxiang Xu, Ye Cong, Yeqiong Zhang, Xuanke Li, Zhijun Dong, Yanjun Li, Guanming Yuan, Jiang Zhang, Zhengwei Cui

Erschienen in: Journal of Materials Science | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphitized mesoporous carbon (GMPC) materials are successfully prepared by a simple template method, using mesophase pitch as carbon source and nano-silica as a template. The mass percentage of silica plays critical roles in the crystalline structure, specific surface area and pore structure as well as the electrochemical performance of GMPC materials. The results show that GMPC materials graphitized at 2400 °C possess both abundant mesopores and a large amount of graphitized microcrystalline domains. The GMPC materials as anode materials for lithium-ion batteries exhibit improved rate performance and good cycling stability, presenting reversible capacity of 248.3 mAh g−1 at 1 C after 100 cycles (retention of 99.7%). The superior high-rate performances of the GMPC materials are attributed to their unique carbon structures combining the hierarchical porous structure and graphitized microcrystalline domains, which would facilitate the rapid diffusion of electrolyte and Li ions and improve the effective utilization of the material surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180CrossRef Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180CrossRef
3.
Zurück zum Zitat Ullah A, Majid A, Rani N (2018) A review on first principles based studies for improvement of cathode material of lithium ion batteries. Chem Eng J 27:219–237 Ullah A, Majid A, Rani N (2018) A review on first principles based studies for improvement of cathode material of lithium ion batteries. Chem Eng J 27:219–237
4.
Zurück zum Zitat Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef
5.
Zurück zum Zitat Moradi B, Botte GG (2016) Recycling of graphite anodes for the next generation of lithium ion batteries. J Appl Electrochem 46:123–148CrossRef Moradi B, Botte GG (2016) Recycling of graphite anodes for the next generation of lithium ion batteries. J Appl Electrochem 46:123–148CrossRef
6.
Zurück zum Zitat Ma C, Zhao Y, Li J, Song Y, Shi JL, Guo QG, Liu L (2013) Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries. Carbon 64:537–556CrossRef Ma C, Zhao Y, Li J, Song Y, Shi JL, Guo QG, Liu L (2013) Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries. Carbon 64:537–556CrossRef
7.
Zurück zum Zitat Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
8.
Zurück zum Zitat Wang MS, Song WL, Wang J, Fan LZ (2015) Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82:337–345CrossRef Wang MS, Song WL, Wang J, Fan LZ (2015) Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82:337–345CrossRef
9.
Zurück zum Zitat Yuan XL, Cong Y, Yu YY, Li XK, Zhang J, Dong ZJ, Yuan GM, Cui ZW, Li YJ (2017) Unique graphitized mesophase carbon microbead@niobium carbide-derived carbon composites as high performance anode materials of lithium-ion battery. Electrochim Acta 238:112–119CrossRef Yuan XL, Cong Y, Yu YY, Li XK, Zhang J, Dong ZJ, Yuan GM, Cui ZW, Li YJ (2017) Unique graphitized mesophase carbon microbead@niobium carbide-derived carbon composites as high performance anode materials of lithium-ion battery. Electrochim Acta 238:112–119CrossRef
10.
Zurück zum Zitat Hou CY, Zhang MW, Halder A, Chi QJ (2017) Graphene directed architecture of fine engineered nanostructures with electrochemical applications. Electrochim Acta 242:202–218CrossRef Hou CY, Zhang MW, Halder A, Chi QJ (2017) Graphene directed architecture of fine engineered nanostructures with electrochemical applications. Electrochim Acta 242:202–218CrossRef
11.
Zurück zum Zitat Luo HM, Yang YF, Chen YZ, Zhang JQ, Zhao X (2016) Structure and electrochemical performance of highly porous carbons by single-step potassium humate carbonization for application in supercapacitors. J Appl Electrochem 46:113–121CrossRef Luo HM, Yang YF, Chen YZ, Zhang JQ, Zhao X (2016) Structure and electrochemical performance of highly porous carbons by single-step potassium humate carbonization for application in supercapacitors. J Appl Electrochem 46:113–121CrossRef
12.
Zurück zum Zitat Shi LL, Chen YX, Chen GY, Wang YW, Chen XH, Song HH (2017) Fabrication of hierarchical porous carbon microspheres using porous layered double oxide templates for high-performance lithium ion batteries. Carbon 123:186–192CrossRef Shi LL, Chen YX, Chen GY, Wang YW, Chen XH, Song HH (2017) Fabrication of hierarchical porous carbon microspheres using porous layered double oxide templates for high-performance lithium ion batteries. Carbon 123:186–192CrossRef
13.
Zurück zum Zitat Zhang WL, Yin J, Lin ZQ, Lin HB, Lu HY, Wang Y, Huang WM (2015) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta 176:1136–1142CrossRef Zhang WL, Yin J, Lin ZQ, Lin HB, Lu HY, Wang Y, Huang WM (2015) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta 176:1136–1142CrossRef
14.
Zurück zum Zitat Fuertes AB (2003) Template synthesis of mesoporous carbons with a controlled particle size. J Mater Chem 13:3085–3088CrossRef Fuertes AB (2003) Template synthesis of mesoporous carbons with a controlled particle size. J Mater Chem 13:3085–3088CrossRef
15.
Zurück zum Zitat Wang CQ, Yan CX, Yao JF, Zhang LX, Xu NP, Liu XQ (2009) Preparation of mesoporous carbons using acid- and alkali-treated zeolite X as the template. J Porous Mater 16:699–705CrossRef Wang CQ, Yan CX, Yao JF, Zhang LX, Xu NP, Liu XQ (2009) Preparation of mesoporous carbons using acid- and alkali-treated zeolite X as the template. J Porous Mater 16:699–705CrossRef
16.
Zurück zum Zitat Inagaki M, Toyoda M, Tsumura T (2014) Control of crystalline structure of porous carbons. RSC Adv 4:41411–41424CrossRef Inagaki M, Toyoda M, Tsumura T (2014) Control of crystalline structure of porous carbons. RSC Adv 4:41411–41424CrossRef
17.
Zurück zum Zitat Inagaki M, Toyoda M, Soneda Y, Tsujimura S, Morishita T (2016) Templated mesoporous carbons: synthesis and applications. Carbon 107:448–473CrossRef Inagaki M, Toyoda M, Soneda Y, Tsujimura S, Morishita T (2016) Templated mesoporous carbons: synthesis and applications. Carbon 107:448–473CrossRef
18.
Zurück zum Zitat Sandi G, Winans RE, Carrado KA (1996) New carbon electrodes for secondary lithium batteries. J Electrochem Soc 143:L95–L98CrossRef Sandi G, Winans RE, Carrado KA (1996) New carbon electrodes for secondary lithium batteries. J Electrochem Soc 143:L95–L98CrossRef
19.
Zurück zum Zitat Sandi G, Carrado KA, Winans RE, Johnson CS, Csencsits R (1999) Carbons for lithium battery applications prepared using sepiolite as an inorganic template. J Electrochem Soc 146:3644–3648CrossRef Sandi G, Carrado KA, Winans RE, Johnson CS, Csencsits R (1999) Carbons for lithium battery applications prepared using sepiolite as an inorganic template. J Electrochem Soc 146:3644–3648CrossRef
20.
Zurück zum Zitat Meyers CJ, Shah SD, Patel SC, Sneeringer RM, Bessel CA, Dollahon NR, Leising RA, Takeuchi ES (2001) Templated Synthesis of carbon materials from zeolites (Y, Beta, and ZSM-5) and a montmorillonite clay (K10): physical and electrochemical characterization. J Phys Chem B 105:2143–2152CrossRef Meyers CJ, Shah SD, Patel SC, Sneeringer RM, Bessel CA, Dollahon NR, Leising RA, Takeuchi ES (2001) Templated Synthesis of carbon materials from zeolites (Y, Beta, and ZSM-5) and a montmorillonite clay (K10): physical and electrochemical characterization. J Phys Chem B 105:2143–2152CrossRef
21.
Zurück zum Zitat Jafari SM, Khosravi M, Mollazadeh M (2016) Nanoporous hard carbon microspheres as anode active material of lithium ion battery. Electrochim Acta 203:9–20CrossRef Jafari SM, Khosravi M, Mollazadeh M (2016) Nanoporous hard carbon microspheres as anode active material of lithium ion battery. Electrochim Acta 203:9–20CrossRef
22.
Zurück zum Zitat Yang J, Zhou XY, Li J, Zou YL, Tang JJ (2012) Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys 135:445–450CrossRef Yang J, Zhou XY, Li J, Zou YL, Tang JJ (2012) Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater Chem Phys 135:445–450CrossRef
23.
Zurück zum Zitat Li NC, Mitchell DT, Lee KP, Martin CR (2003) A nanostructured honeycomb carbon anode. J Electrochem Soc 150:A979–A984CrossRef Li NC, Mitchell DT, Lee KP, Martin CR (2003) A nanostructured honeycomb carbon anode. J Electrochem Soc 150:A979–A984CrossRef
25.
Zurück zum Zitat Zhou Y, An G, Wang L, Song X, Qiu J (2011) Progress in mesophase pitch research and its application. Chem Ind Eng Prog 30:2456–2460 Zhou Y, An G, Wang L, Song X, Qiu J (2011) Progress in mesophase pitch research and its application. Chem Ind Eng Prog 30:2456–2460
26.
Zurück zum Zitat Hou X, Zhang M, Wang J, Hu S, Liu X, Shao Z (2015) High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. J Alloys Compd 639:27–35CrossRef Hou X, Zhang M, Wang J, Hu S, Liu X, Shao Z (2015) High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. J Alloys Compd 639:27–35CrossRef
27.
Zurück zum Zitat Li SL, Yan WL, Zhang WX (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626CrossRef Li SL, Yan WL, Zhang WX (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626CrossRef
28.
Zurück zum Zitat Orikasa H, Morishita T (2013) Nano structure of MgO-templated carbon and its change induced by heat-treatment. Carbon 52:621–622CrossRef Orikasa H, Morishita T (2013) Nano structure of MgO-templated carbon and its change induced by heat-treatment. Carbon 52:621–622CrossRef
29.
Zurück zum Zitat Maruyama J, Maruyama S, Fukuhara T, Chashiro K, Uyama H (2018) Ordered mesoporous structure by graphitized carbon nanowall assembly. Carbon 126:452–455CrossRef Maruyama J, Maruyama S, Fukuhara T, Chashiro K, Uyama H (2018) Ordered mesoporous structure by graphitized carbon nanowall assembly. Carbon 126:452–455CrossRef
30.
Zurück zum Zitat Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7:23515–23520CrossRef Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7:23515–23520CrossRef
31.
Zurück zum Zitat Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107CrossRef
32.
Zurück zum Zitat Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M (2015) Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon 95:646–652CrossRef Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M (2015) Structural analysis of polycrystalline graphene systems by Raman spectroscopy. Carbon 95:646–652CrossRef
33.
Zurück zum Zitat Ferrari AC (2007) Raman spectroscopy of grapheme and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of grapheme and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
34.
Zurück zum Zitat Leyva-García S, Nueangnoraj K, Lozano-Castello PD, Nishihara H, Kyotani T, Morallón E, Cazorla-Amorós D (2015) Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. Carbon 89:63–73CrossRef Leyva-García S, Nueangnoraj K, Lozano-Castello PD, Nishihara H, Kyotani T, Morallón E, Cazorla-Amorós D (2015) Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy. Carbon 89:63–73CrossRef
35.
Zurück zum Zitat Jeong MG, Yoon SH, Chun YS, Lee ES, Lim DS (2014) Effect of lattice structure of silicon carbide on crystal formation of carbide-derived carbon. Carbon 79:19–27CrossRef Jeong MG, Yoon SH, Chun YS, Lee ES, Lim DS (2014) Effect of lattice structure of silicon carbide on crystal formation of carbide-derived carbon. Carbon 79:19–27CrossRef
36.
Zurück zum Zitat Casco ME, Martínez-Escandell M, Silvestre-Albero J, Rodríguez-Reinoso F (2014) Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67:230–235CrossRef Casco ME, Martínez-Escandell M, Silvestre-Albero J, Rodríguez-Reinoso F (2014) Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67:230–235CrossRef
37.
Zurück zum Zitat Wei Y, Tao Y, Zhang C, Wang J, Qiao W, Ling L, Long D (2016) Layered carbide derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries. Electrochim Acta 188:385–392CrossRef Wei Y, Tao Y, Zhang C, Wang J, Qiao W, Ling L, Long D (2016) Layered carbide derived carbon with hierarchically porous structure for high rate lithium-sulfur batteries. Electrochim Acta 188:385–392CrossRef
38.
Zurück zum Zitat Zhou DD, Du YJ, Song YF, Wang YG, Wang CX, Xia YY (2012) Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. J Mater Chem A 1:1192–1200CrossRef Zhou DD, Du YJ, Song YF, Wang YG, Wang CX, Xia YY (2012) Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. J Mater Chem A 1:1192–1200CrossRef
Metadaten
Titel
Improved rate performance and cycling stability of graphitized mesoporous carbon as anode materials for lithium-ion batteries
verfasst von
Jing Zhang
Tianxiang Xu
Ye Cong
Yeqiong Zhang
Xuanke Li
Zhijun Dong
Yanjun Li
Guanming Yuan
Jiang Zhang
Zhengwei Cui
Publikationsdatum
29.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2855-6

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.