Skip to main content

25.10.2016

Improved upper bounds for partial spreads

verfasst von: Sascha Kurz

Erschienen in: Designs, Codes and Cryptography | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A partial \((k-1)\)-spread in \({\text {PG}}(n-1,q)\) is a collection of \((k-1)\)-dimensional subspaces with trivial intersection. So far, the maximum size of a partial \((k-1)\)-spread in \({\text {PG}}(n-1,q)\) was known for the cases \(n\equiv 0\pmod k\), \(n\equiv 1\pmod k\), and \(n\equiv 2\pmod k\) with the additional requirements \(q=2\) and \(k=3\). We completely resolve the case \(n\equiv 2\pmod k\) for the binary case \(q=2\).
Fußnoten
1
Instead of \({\text {PG}}(n-1,q)\) we will mainly use the notation \(\mathbb {F}_{q}^{n}\) in the following.
 
2
In the projective space the dimensions are commonly one less compared to the consideration of subspaces in \(\mathbb {F}_{q}^{n}\).
 
3
Obviously, we have \(A_q(n,2;1)=\genfrac[]{0.0pt}{}{n}{1}_{q}\).
 
4
As \(A_q(k+2,2k;k)=1\) for \(k\ge 2\), the assumption \(n\ge 2k+2\) is no restriction. The case \(k=3\) is covered by [6], see Theorem 4. For \(k=1,2\) the remainder of n is strictly smaller than 2. So, in other words, the binary case \(n\equiv 2\pmod k\) is completely resolved.
 
5
We have to exclude the trivial subspace partition \({\mathcal {P}}=\left\{ \mathbb {F}_{q}^{n}\right\} \), where \(d_1=n\) and \(d_2\) does not exist.
 
6
Theorem 10(ii,iv) yields \(n_1= 2^{k-1}-1\) or \(n_1>2^{k-1}\), if we set \(d_2=k-1\) and \(d_1=1\). The improvement of Theorem 10, i.e., see [12, Theorem 2], is not sufficient to exclude the case of Lemma 1.
 
7
The result is also valid for \(k=2r-1\), \(r\ge 2\), and \(q\in \{2,3\}\).
 
8
By a more refined analysis, one can classify the possible hole configurations up to isomorphism.
 
9
For even \(q>2\) the tail condition of Theorem 10 cannot be applied directly in the proof of Lemma 3.
 
10
The specific use of Theorem 10 is just a shortcut, resting on the same rough idea. However, it points to an area where even more theoretic results are available, that possibly can be used in more involved cases.
 
11
In this context, we would like to mention the very recent preprint [15].
 
12
Using the notation from this paper, we have \({\overline{s}}=q^k\), \({\overline{r}}=A_q(n,2k;k)\), and \(\mu =q^{n-2k}\).
 
Literatur
2.
3.
Zurück zum Zitat Dembowski P.: Finite Geometries: Reprint of the 1968 Edition. Springer, Berlin (2012). Dembowski P.: Finite Geometries: Reprint of the 1968 Edition. Springer, Berlin (2012).
4.
Zurück zum Zitat Drake D.A., Freeman J.W.: Partial \(t\)-spreads and group constructible \((s, r,\mu )\)-nets. J. Geom. 13(2), 210–216 (1979).MathSciNetCrossRefMATH Drake D.A., Freeman J.W.: Partial \(t\)-spreads and group constructible \((s, r,\mu )\)-nets. J. Geom. 13(2), 210–216 (1979).MathSciNetCrossRefMATH
5.
Zurück zum Zitat Eisfeld J., Storme L.: \(t\)-Spreads and Minimal \(t\)-Covers in Finite Projective Spaces. Lecture NotesUniversiteit Gent, Gent (2000). Eisfeld J., Storme L.: \(t\)-Spreads and Minimal \(t\)-Covers in Finite Projective Spaces. Lecture NotesUniversiteit Gent, Gent (2000).
6.
Zurück zum Zitat El-Zanati S., Jordon H., Seelinger G., Sissokho P., Spence L.: The maximum size of a partial 3-spread in a finite vector space over \({G}{F}(2)\). Des. Codes Cryptogr. 54(2), 101–107 (2010).MathSciNetCrossRefMATH El-Zanati S., Jordon H., Seelinger G., Sissokho P., Spence L.: The maximum size of a partial 3-spread in a finite vector space over \({G}{F}(2)\). Des. Codes Cryptogr. 54(2), 101–107 (2010).MathSciNetCrossRefMATH
8.
Zurück zum Zitat Etzion T., Silberstein N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009).MathSciNetCrossRef Etzion T., Silberstein N.: Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55(7), 2909–2919 (2009).MathSciNetCrossRef
10.
Zurück zum Zitat Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).MathSciNetMATH Gabidulin E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985).MathSciNetMATH
12.
Zurück zum Zitat Heden O., Lehmann J., Năstase E., Sissokho P.: The supertail of a subspace partition. Des. Codes Cryptogr. 69(3), 305–316 (2013).MathSciNetCrossRefMATH Heden O., Lehmann J., Năstase E., Sissokho P.: The supertail of a subspace partition. Des. Codes Cryptogr. 69(3), 305–316 (2013).MathSciNetCrossRefMATH
14.
Zurück zum Zitat Hong S.J., Patel A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. 100(12), 1322–1331 (1972).MathSciNetCrossRefMATH Hong S.J., Patel A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. 100(12), 1322–1331 (1972).MathSciNetCrossRefMATH
15.
Zurück zum Zitat Năstase E., Sissokho P.: The Maximum Size of a Partial Spread in a Finite Projective Space. arXiv preprint: arXiv:1605.04824 (2016). Năstase E., Sissokho P.: The Maximum Size of a Partial Spread in a Finite Projective Space. arXiv preprint: arXiv:​1605.​04824 (2016).
16.
Zurück zum Zitat Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).MathSciNetCrossRefMATH Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).MathSciNetCrossRefMATH
Metadaten
Titel
Improved upper bounds for partial spreads
verfasst von
Sascha Kurz
Publikationsdatum
25.10.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 1/2017
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0290-8