Skip to main content
Erschienen in: Journal of Computational Electronics 2/2018

23.03.2018

Improvement in electrostatic characteristics of doped TFETs by hole layer formation

verfasst von: Deepak Soni, Dheeraj Sharma, Mohd. Aslam, Shivendra Yadav

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a distinct approach to enhance the performance of physically doped tunnel field-effect transistors (TFETs) based on creation of a layer of positive charge at the semiconductor–insulator interface in the source region. Formation of such a hole layer resolves the issue related to material solubility and improves direct-current (DC) as well as high-frequency figures of merit. To implement this approach, a typical \(P^{+}\)-I-\(N^{+}\)-type physically doped TFET structure is considered. Furthermore, a metal electrode with workfunction of 4.53 eV is placed over the heavily doped \(P^{+}\) source region with a negative supply voltage. The negative voltage at the source electrode attracts holes from the source region and creates a hole layer just below the semiconductor–insulator interface. This phenomenon makes the source–channel junction abrupt and reduces the tunneling barrier width, resulting in higher tunneling generation rate of charge carriers at the source–channel junction. Thus, the proposed device shows 100-fold increased ON-state current and a threshold voltage reduction of 300 mV. Analog/radiofrequency (RF) parameters are also greatly improved compared with the conventional device. Furthermore, optimization of the spacer length (\(L_\mathrm{SG}\)), i.e., the gap between the source and gate electrode, and application of a negative voltage (\(-V_\mathrm{SE}\)) at the source electrode (SE), were applied to achieve the optimum performance. Moreover, device linearity was also analyzed in a comparative manner.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mohankumar, N., Syamal, B., Sarkar, C.K.: Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Electron Device Lett. 57(4), 820–826 (2010)CrossRef Mohankumar, N., Syamal, B., Sarkar, C.K.: Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Electron Device Lett. 57(4), 820–826 (2010)CrossRef
2.
Zurück zum Zitat Kilchytska, V., Nve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., De Meyer, K., Raynaud, C., Dehan, M., Raskin, J.-P., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Electron Device Lett. 50(3), 577–588 (2010)CrossRef Kilchytska, V., Nve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., De Meyer, K., Raynaud, C., Dehan, M., Raskin, J.-P., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Electron Device Lett. 50(3), 577–588 (2010)CrossRef
3.
Zurück zum Zitat Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, New York (2008)CrossRef Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, New York (2008)CrossRef
4.
Zurück zum Zitat Bangsaruntip, S., Cohen, G.M., Majumdar, A., Sleight, J.W.: Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett. 31(9), 903905 (2010)CrossRef Bangsaruntip, S., Cohen, G.M., Majumdar, A., Sleight, J.W.: Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Device Lett. 31(9), 903905 (2010)CrossRef
5.
Zurück zum Zitat Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2007)CrossRef Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56(3), 456–465 (2007)CrossRef
6.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Silicon Nanowire tunnelling field-effect transistors. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Silicon Nanowire tunnelling field-effect transistors. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
7.
Zurück zum Zitat Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Devices Lett. 27(4), 297300 (2006) Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Devices Lett. 27(4), 297300 (2006)
8.
Zurück zum Zitat Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Devices Lett. 8(8), 347349 (1987)CrossRef Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Devices Lett. 8(8), 347349 (1987)CrossRef
9.
Zurück zum Zitat Baba, T.: Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 2 Lett. 31(4B), 455457 (1992) Baba, T.: Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 2 Lett. 31(4B), 455457 (1992)
10.
Zurück zum Zitat Boucart, K., Riess, W., Ionescu, A.M.: Lateral strain profile as key technology booster for all-silicon tunnel FETs. IEEE Electron Device Lett. 30(6), 656–658 (2009)CrossRef Boucart, K., Riess, W., Ionescu, A.M.: Lateral strain profile as key technology booster for all-silicon tunnel FETs. IEEE Electron Device Lett. 30(6), 656–658 (2009)CrossRef
11.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2010)CrossRef Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2010)CrossRef
12.
Zurück zum Zitat Rawat, B., Paily, R.: Analysis of graphene tunnel field-effect transistors for analog/RF applications. IEEE Trans. Electron Devices 62(8), 2663–2669 (2015)CrossRef Rawat, B., Paily, R.: Analysis of graphene tunnel field-effect transistors for analog/RF applications. IEEE Trans. Electron Devices 62(8), 2663–2669 (2015)CrossRef
13.
Zurück zum Zitat Ghosh, S., Koley, K., Sarkar, C.K.: Impact of the lateral straggle on the analog and RF perforamcne of TFET. Microelectron. Reliab. 55(2), 326–331 (2015)CrossRef Ghosh, S., Koley, K., Sarkar, C.K.: Impact of the lateral straggle on the analog and RF perforamcne of TFET. Microelectron. Reliab. 55(2), 326–331 (2015)CrossRef
14.
Zurück zum Zitat Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE Electron Device Soc. 2(6), 187–190 (2014)CrossRef Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE Electron Device Soc. 2(6), 187–190 (2014)CrossRef
15.
Zurück zum Zitat Sharma, A., Reza, A.K., Roy, K.: Proposal of an intrinsic-source broken-gap tunnel FET to reduce band-tail effects on subthreshold swing: a simulation study. IEEE Trans. Electron Devices 63(6), 2597–2602 (2016)CrossRef Sharma, A., Reza, A.K., Roy, K.: Proposal of an intrinsic-source broken-gap tunnel FET to reduce band-tail effects on subthreshold swing: a simulation study. IEEE Trans. Electron Devices 63(6), 2597–2602 (2016)CrossRef
16.
Zurück zum Zitat Min, J., Wu, J., Taur, Y.: Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 34(10), 1094–1096 (2015)CrossRef Min, J., Wu, J., Taur, Y.: Analysis of source doping effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 34(10), 1094–1096 (2015)CrossRef
17.
Zurück zum Zitat Sandow, C., Knoch, J., Urban, C., Zhao, Q.-T., Mantl, S.: Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid-State Electron. 53(10), 1126–1129 (2009)CrossRef Sandow, C., Knoch, J., Urban, C., Zhao, Q.-T., Mantl, S.: Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid-State Electron. 53(10), 1126–1129 (2009)CrossRef
18.
Zurück zum Zitat Schmid, H., Bjrk, M.T., Knoch, J., Karg, S., Riel, H., Riess, W.: Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett. 57(4), 820–826 (2009) Schmid, H., Bjrk, M.T., Knoch, J., Karg, S., Riel, H., Riess, W.: Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett. 57(4), 820–826 (2009)
19.
Zurück zum Zitat ATLAS device simulation soft, Silvaco. Santa Clara, CA, USA (2012) ATLAS device simulation soft, Silvaco. Santa Clara, CA, USA (2012)
20.
Zurück zum Zitat Sahay, S., Kumar, M.J.: Symmetric operation in an extended back gate JLFET for scaling to the 5-nm regime considering quantum confinement effects. IEEE Trans. Electron Devices 64(1), 21–27 (2017)CrossRef Sahay, S., Kumar, M.J.: Symmetric operation in an extended back gate JLFET for scaling to the 5-nm regime considering quantum confinement effects. IEEE Trans. Electron Devices 64(1), 21–27 (2017)CrossRef
21.
Zurück zum Zitat Padilla, J.L., Gmiz, F., Godoy, A.: A simple approach to quantum confinement in tunneling field-effect transistors. IEEE Electron Devices Lett. 33(10), 1342–1344 (2012)CrossRef Padilla, J.L., Gmiz, F., Godoy, A.: A simple approach to quantum confinement in tunneling field-effect transistors. IEEE Electron Devices Lett. 33(10), 1342–1344 (2012)CrossRef
22.
Zurück zum Zitat Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503-1–143503-3 (2011). https://doi.org/10.1063/1.3573812 Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503-1–143503-3 (2011). https://​doi.​org/​10.​1063/​1.​3573812
23.
Zurück zum Zitat Tirkey, S., Sharma, D., Yadav, D.S., Yadav, S.: Analysis of a novel metal implant junctionless tunnel field-effect transistor for better DC and analog/RF electrostatic parameters. IEEE Trans. Electron Devices 64(9), 3943–3950 (2017)CrossRef Tirkey, S., Sharma, D., Yadav, D.S., Yadav, S.: Analysis of a novel metal implant junctionless tunnel field-effect transistor for better DC and analog/RF electrostatic parameters. IEEE Trans. Electron Devices 64(9), 3943–3950 (2017)CrossRef
24.
Zurück zum Zitat Kondekar, P.N., Nigam, K., Pandey, S., Sharma, D.: Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE J. Solid-State Circuits 64(2), 412–418 (2017) Kondekar, P.N., Nigam, K., Pandey, S., Sharma, D.: Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE J. Solid-State Circuits 64(2), 412–418 (2017)
25.
Zurück zum Zitat Veendrick, H.J.M.: Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE J. Solid-State Circuits 19(4), 468–473 (1984)CrossRef Veendrick, H.J.M.: Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE J. Solid-State Circuits 19(4), 468–473 (1984)CrossRef
26.
Zurück zum Zitat Kim, M.S., Liu, H., Li, X., Datta, S., Narayanan, V.: A steep-slope tunnel FET based SAR analog-to-digital converter. IEEE Trans. Electron Devices 61(11), 3661–3667 (2014)CrossRef Kim, M.S., Liu, H., Li, X., Datta, S., Narayanan, V.: A steep-slope tunnel FET based SAR analog-to-digital converter. IEEE Trans. Electron Devices 61(11), 3661–3667 (2014)CrossRef
27.
Zurück zum Zitat Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. 16(2), 227234 (2016) Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. 16(2), 227234 (2016)
28.
Zurück zum Zitat Raad, B.R., Tirkey, S., Sharma, D., Kondekar, P.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)CrossRef Raad, B.R., Tirkey, S., Sharma, D., Kondekar, P.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)CrossRef
29.
Zurück zum Zitat Saifullah, M.S.M., Ondarcuhu, T., Koltsov, D.K., Joachim, C., Welland, M.E.: A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics. Nanotechnology 13, 659662 (2002)CrossRef Saifullah, M.S.M., Ondarcuhu, T., Koltsov, D.K., Joachim, C., Welland, M.E.: A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics. Nanotechnology 13, 659662 (2002)CrossRef
31.
Zurück zum Zitat Guillorn, M.A., Carra, D.W., Tiberio, R.C., Greenbaum, E., Simpson, M.L.: Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization. JVST B Microelectron. Nanometer Struct. 18, 1177–1181 (2000)CrossRef Guillorn, M.A., Carra, D.W., Tiberio, R.C., Greenbaum, E., Simpson, M.L.: Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization. JVST B Microelectron. Nanometer Struct. 18, 1177–1181 (2000)CrossRef
32.
Zurück zum Zitat Naitoh, Y., Ohata, T., Matsushita, R., Okawa, E., Horikawa, M., Oyama, M., Mukaida, M., Wang, D.F., Kiguchi, M., Tsukagoshi, K., Ishida, T.: Self-aligned formation of sub-1-nm gaps utilizing electromigration during metal deposition. ACS Appl. Mater. Interfaces 5, 1–24 (2013)CrossRef Naitoh, Y., Ohata, T., Matsushita, R., Okawa, E., Horikawa, M., Oyama, M., Mukaida, M., Wang, D.F., Kiguchi, M., Tsukagoshi, K., Ishida, T.: Self-aligned formation of sub-1-nm gaps utilizing electromigration during metal deposition. ACS Appl. Mater. Interfaces 5, 1–24 (2013)CrossRef
Metadaten
Titel
Improvement in electrostatic characteristics of doped TFETs by hole layer formation
verfasst von
Deepak Soni
Dheeraj Sharma
Mohd. Aslam
Shivendra Yadav
Publikationsdatum
23.03.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1139-3

Weitere Artikel der Ausgabe 2/2018

Journal of Computational Electronics 2/2018 Zur Ausgabe

Neuer Inhalt