Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Improvement of Harvesting Technology for Algal Biomass Production

verfasst von : Supratim Ghosh, Debabrata Das

Erschienen in: Algal Biorefinery: An Integrated Approach

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Global demands for biomass utilization as food, feed, biofuels and chemical production have been increased to a great extent. For a sustainable future it is necessary to minimise the environmental impact of our activities keeping in mind the socio-economic parameters along with operational efficiency. Our continuous dependence on fossil fuels is unsustainable because of its dwindling world reserves and global warming due to its use. Recent research has focussed on the development of renewable and potentially carbon neutral biofuels. First generation biofuels derived from terrestrial crops has impacted the environment in a big way by hastening deforestation and environmental pollution. The food vs. fuel debate has also come into force. Replacing them with second generation biofuels which is derived from lignocellulosic feedstock has addressed majority of the problems. But a concern over land usage and competition still remains. Third generation biofuels derived from microalgae seem to be the solution to the demand for alternative energy sources which is devoid of the major drawbacks associated with first and second generation of biofuels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adan, B. and Lee, E.W. (1980). High rate algae growth pond under tropical conditions. Presented at a workshop on waste treatment and nutrient recovery. Singapore, 27–29 February, 1980. Adan, B. and Lee, E.W. (1980). High rate algae growth pond under tropical conditions. Presented at a workshop on waste treatment and nutrient recovery. Singapore, 27–29 February, 1980.
Zurück zum Zitat Alfafara, C.G., Nakano, K., Nomura, N., Igarashi, T. and Matsumura, M. (2002). Operating and scale-up factors for the electrolytic removal of algae from eutrophied lake water. Journal of Chemical Technology and Biotechnology, 77, 871–876.CrossRef Alfafara, C.G., Nakano, K., Nomura, N., Igarashi, T. and Matsumura, M. (2002). Operating and scale-up factors for the electrolytic removal of algae from eutrophied lake water. Journal of Chemical Technology and Biotechnology, 77, 871–876.CrossRef
Zurück zum Zitat Amaro, H.M., Guedes, A.C. and Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88(10), 3402–3410.CrossRef Amaro, H.M., Guedes, A.C. and Malcata, F.X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88(10), 3402–3410.CrossRef
Zurück zum Zitat Azarian, G.H., Mesdaghinia, A.R., Vaezi, F., Nabizadeh, R. and Nematollahi, D. (2007). Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iranian Journal of Public Health, 36, 57–64. Azarian, G.H., Mesdaghinia, A.R., Vaezi, F., Nabizadeh, R. and Nematollahi, D. (2007). Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iranian Journal of Public Health, 36, 57–64.
Zurück zum Zitat Bare, W.F.R., Jones, N.B. and Middlebrook, E.J. (1975). Algae removal using dissolved air flotation. Journal of Water Pollution Control Federation, 47, 153–169. Bare, W.F.R., Jones, N.B. and Middlebrook, E.J. (1975). Algae removal using dissolved air flotation. Journal of Water Pollution Control Federation, 47, 153–169.
Zurück zum Zitat Ben-Amotz, A. and Avron, M. (1990). The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology, 8, 121–125.CrossRef Ben-Amotz, A. and Avron, M. (1990). The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology, 8, 121–125.CrossRef
Zurück zum Zitat Benemann, J.R., Kopman, B.L., Weismsman, D.E., Eisenverg, D.E. and Goebel, R.P. (1980). Development of microalgae harvesting and high rate ponds technologies in California. In: Shelef, B., Solder, C.J. (Eds), Algae Biomass. Elsevier, Amsterdam. Benemann, J.R., Kopman, B.L., Weismsman, D.E., Eisenverg, D.E. and Goebel, R.P. (1980). Development of microalgae harvesting and high rate ponds technologies in California. In: Shelef, B., Solder, C.J. (Eds), Algae Biomass. Elsevier, Amsterdam.
Zurück zum Zitat Benoufella, F., Laplanche, A., Boisdon, V. and Bourbigot, M.M. (1994). Elimination of microcystis cyanobacteria (blue-green algae) by an ozoflotation process—A pilot-plant study. Water Science & Technology, 30, 245–257. Benoufella, F., Laplanche, A., Boisdon, V. and Bourbigot, M.M. (1994). Elimination of microcystis cyanobacteria (blue-green algae) by an ozoflotation process—A pilot-plant study. Water Science & Technology, 30, 245–257.
Zurück zum Zitat Betzer, N., Argaman, Y. and Kott, Y. (1980). Effluent treatment and algae recovery by ozone-induced flotation. Water Research, 14, 1003–1009.CrossRef Betzer, N., Argaman, Y. and Kott, Y. (1980). Effluent treatment and algae recovery by ozone-induced flotation. Water Research, 14, 1003–1009.CrossRef
Zurück zum Zitat Bosma, R., van Spronsen, W.A., Tramper, J. and Wijffels, R.H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15, 143–153.CrossRef Bosma, R., van Spronsen, W.A., Tramper, J. and Wijffels, R.H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15, 143–153.CrossRef
Zurück zum Zitat Bratby, J. (2008). Coagulation and Flocculation in Water and Wastewater Treatment. IWA Publishing. Bratby, J. (2008). Coagulation and Flocculation in Water and Wastewater Treatment. IWA Publishing.
Zurück zum Zitat Brennan, L. and Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.CrossRef Brennan, L. and Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.CrossRef
Zurück zum Zitat Cerff, M., Morweiser, M., Dillschneider, R., Michel, A., Menzel, K. and Posten, P. (2012). Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration. Bioresource Technology, 118, 289–295.CrossRef Cerff, M., Morweiser, M., Dillschneider, R., Michel, A., Menzel, K. and Posten, P. (2012). Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration. Bioresource Technology, 118, 289–295.CrossRef
Zurück zum Zitat Chang, Y.R. and Lee, D.J. (2012). Coagulation–membrane filtration of Chlorella vulgaris at different growth phases. Drying Technology, 30, 1317–1322.CrossRef Chang, Y.R. and Lee, D.J. (2012). Coagulation–membrane filtration of Chlorella vulgaris at different growth phases. Drying Technology, 30, 1317–1322.CrossRef
Zurück zum Zitat Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology, 102(1), 71–81.CrossRef Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology, 102(1), 71–81.CrossRef
Zurück zum Zitat Chen, M.Y., Liu, J.C. and Ju, Y.H. (1998). Flotation removal of algae from water. Colloids and Surfaces B, 12, 49–55.CrossRef Chen, M.Y., Liu, J.C. and Ju, Y.H. (1998). Flotation removal of algae from water. Colloids and Surfaces B, 12, 49–55.CrossRef
Zurück zum Zitat Cheng, Y.L., Juang, Y.C., Liao, G.Y., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C. and Lee, D.J. (2010). Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 101, 9092–9096.CrossRef Cheng, Y.L., Juang, Y.C., Liao, G.Y., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C. and Lee, D.J. (2010). Dispersed ozone flotation of Chlorella vulgaris. Bioresource Technology, 101, 9092–9096.CrossRef
Zurück zum Zitat Cheng, Y.L., Juang, Y.C., Liao, G.Y., Tsai, P.W., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C., Chen, W.M. and Lee, D.J. (2011). Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technnology, 102, 82–87.CrossRef Cheng, Y.L., Juang, Y.C., Liao, G.Y., Tsai, P.W., Ho, S.H., Yeh, K.L., Chen, C.Y., Chang, J.S., Liu, J.C., Chen, W.M. and Lee, D.J. (2011). Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technnology, 102, 82–87.CrossRef
Zurück zum Zitat Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006). Settling characteristics of problem algae in the water treatment process. Water Science & Technology, 53, 113–119.CrossRef Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006). Settling characteristics of problem algae in the water treatment process. Water Science & Technology, 53, 113–119.CrossRef
Zurück zum Zitat Christenson, L. and Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.CrossRef Christenson, L. and Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.CrossRef
Zurück zum Zitat Contreras, S., Pieber, M., del Rio, A., Soto, M.A., Toha, J. and Veloz, A. (1981). A highly efficient electrolytic method for microalgae flocculation from aqueous cultures. Biotechnology and Bioengineering, 23, 1165–1168.CrossRef Contreras, S., Pieber, M., del Rio, A., Soto, M.A., Toha, J. and Veloz, A. (1981). A highly efficient electrolytic method for microalgae flocculation from aqueous cultures. Biotechnology and Bioengineering, 23, 1165–1168.CrossRef
Zurück zum Zitat Craggs, R., Sutherland, D. and Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329–337.CrossRef Craggs, R., Sutherland, D. and Campbell, H. (2012). Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, 24, 329–337.CrossRef
Zurück zum Zitat Edzwald, J.K. (1993). Algae, bubbles, coagulants, and dissolved air flotation. Water Science & Technology, 27, 67–81. Edzwald, J.K. (1993). Algae, bubbles, coagulants, and dissolved air flotation. Water Science & Technology, 27, 67–81.
Zurück zum Zitat Eldridge, R.J., Hill, D.R.A. and Gladman, B.R. (2012). A comparative study of the coagulation behaviour of marine microalgae. Journal of Applied Phycology, 24, 1667–1679.CrossRef Eldridge, R.J., Hill, D.R.A. and Gladman, B.R. (2012). A comparative study of the coagulation behaviour of marine microalgae. Journal of Applied Phycology, 24, 1667–1679.CrossRef
Zurück zum Zitat Friedman, A.A., Peaks, D.A. and Nichols, R.L. (1977). Algae separation from oxidation pond effluents. Journal of Water Pollution Control Federation, 49, 111–119. Friedman, A.A., Peaks, D.A. and Nichols, R.L. (1977). Algae separation from oxidation pond effluents. Journal of Water Pollution Control Federation, 49, 111–119.
Zurück zum Zitat Gao, S., Du, M., Tian, J., Yang, J., Ma, F. and Nan, J. (2010b). Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. Journal of Hazardous Materials, 182, 827–834.CrossRef Gao, S., Du, M., Tian, J., Yang, J., Ma, F. and Nan, J. (2010b). Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal. Journal of Hazardous Materials, 182, 827–834.CrossRef
Zurück zum Zitat Gao, S., Yang, J., Tian, J., Ma, F., Tu, G. and Du, M. (2010a). Electro-coagulation-flotation process for algae removal. J Hazard Mater, 177, 336–343.CrossRef Gao, S., Yang, J., Tian, J., Ma, F., Tu, G. and Du, M. (2010a). Electro-coagulation-flotation process for algae removal. J Hazard Mater, 177, 336–343.CrossRef
Zurück zum Zitat Georgianna, D.R. and Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488, 329–335.CrossRef Georgianna, D.R. and Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488, 329–335.CrossRef
Zurück zum Zitat Govender, P., Domingo, J.L., Bester, M.C., Pretorius, I.S. and Bauer, F.F. (2008). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Applied Environmental Microbiology, 74, 6041–6052.CrossRef Govender, P., Domingo, J.L., Bester, M.C., Pretorius, I.S. and Bauer, F.F. (2008). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Applied Environmental Microbiology, 74, 6041–6052.CrossRef
Zurück zum Zitat Greenwell, H.C., Laurens, L.M.L. , Shields, R.J., Lovitt, R.W. and Flynn K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.CrossRef Greenwell, H.C., Laurens, L.M.L. , Shields, R.J., Lovitt, R.W. and Flynn K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.CrossRef
Zurück zum Zitat Gutzeit, G., Lorch, D., Weber, A., Engels, M. and Neis, U. (2005). Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Science & Technology, 52, 9–18. Gutzeit, G., Lorch, D., Weber, A., Engels, M. and Neis, U. (2005). Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Science & Technology, 52, 9–18.
Zurück zum Zitat Habib, M.A., Parvin, M., Huntington, T.C. and Hasan, M.R. (2008). A review on culture, production and use of Spirulina as food for humans and needs for domestic animals and fish. FAO Fisheries and Aquaculture Circular No. 1034, Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department Rome, Italy. Habib, M.A., Parvin, M., Huntington, T.C. and Hasan, M.R. (2008). A review on culture, production and use of Spirulina as food for humans and needs for domestic animals and fish. FAO Fisheries and Aquaculture Circular No. 1034, Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department Rome, Italy.
Zurück zum Zitat Harun, R., Singh, M., Forde, G.M. and Danquah, M.K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047.CrossRef Harun, R., Singh, M., Forde, G.M. and Danquah, M.K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047.CrossRef
Zurück zum Zitat Jin, P.K., Wang, X.C. and Hu, G. (2006). A dispersed-ozone flotation (DOF) separator for tertiary wastewater treatment. Water Science & Technology, 53, 151–157.CrossRef Jin, P.K., Wang, X.C. and Hu, G. (2006). A dispersed-ozone flotation (DOF) separator for tertiary wastewater treatment. Water Science & Technology, 53, 151–157.CrossRef
Zurück zum Zitat Kim, J., Ryu, B.G., Kim, B.K., Han, J.I. and Yang, J.W. (2012). Continuous microalgae recovery using electrolysis with polarity exchange. Bioresource Technology, 124, 164–170.CrossRef Kim, J., Ryu, B.G., Kim, B.K., Han, J.I. and Yang, J.W. (2012). Continuous microalgae recovery using electrolysis with polarity exchange. Bioresource Technology, 124, 164–170.CrossRef
Zurück zum Zitat Knuckey, R.M., Brown, M.R., Robert, R. and Frampton, D.M.F. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquaculture Engineering, 35, 300–313.CrossRef Knuckey, R.M., Brown, M.R., Robert, R. and Frampton, D.M.F. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquaculture Engineering, 35, 300–313.CrossRef
Zurück zum Zitat Koopman, B.L., Thomson, R., Yackzan, R., Benemann, J.R. and Oswald, W.J. (1978). Investigation of the pond isolation process for microalgae separation from woodlands waste pond effluents. Final Report, U.C. Berkeley. Koopman, B.L., Thomson, R., Yackzan, R., Benemann, J.R. and Oswald, W.J. (1978). Investigation of the pond isolation process for microalgae separation from woodlands waste pond effluents. Final Report, U.C. Berkeley.
Zurück zum Zitat Kumar, H.D., Yadava, P.K. and Gaur, J.P. (1981). Electrical flocculation of the unicellular green algae Chlorella vulgaris. Aquacultural Botany, 11, 187–195.CrossRef Kumar, H.D., Yadava, P.K. and Gaur, J.P. (1981). Electrical flocculation of the unicellular green algae Chlorella vulgaris. Aquacultural Botany, 11, 187–195.CrossRef
Zurück zum Zitat Larkum, A.W.D, Ross, I.L., Kruse, O. and Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 30, 198–205.CrossRef Larkum, A.W.D, Ross, I.L., Kruse, O. and Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 30, 198–205.CrossRef
Zurück zum Zitat Lazarova, V., Phillippe, R., Sturny, V. and Arcangell, J.P. (2006). Evaluation of economic viability and benefits of urban water reuse and its contribution to sustainable development. Water Practical Technology, 1, 1–11. Lazarova, V., Phillippe, R., Sturny, V. and Arcangell, J.P. (2006). Evaluation of economic viability and benefits of urban water reuse and its contribution to sustainable development. Water Practical Technology, 1, 1–11.
Zurück zum Zitat Lee, A.K., Lewis, D.M. and Ashman, P.J. (2008). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology, 21, 559–567.CrossRef Lee, A.K., Lewis, D.M. and Ashman, P.J. (2008). Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology, 21, 559–567.CrossRef
Zurück zum Zitat Levin, G.V., Clendenning, J.R., Gibor, A. and Bogar, F.D. (1962). Harvesting of algae by froth flotation. Applied Microbiology, 10, 169–175. Levin, G.V., Clendenning, J.R., Gibor, A. and Bogar, F.D. (1962). Harvesting of algae by froth flotation. Applied Microbiology, 10, 169–175.
Zurück zum Zitat Li, Y.G., Xu, L., Huang, Y.M., Wang, F., Guo, C. and Liu, C.Z. (2011). Microalgal biodiesel in China: Opportunities and challenges. Applied Energy, 88(10), 3432–3437.CrossRef Li, Y.G., Xu, L., Huang, Y.M., Wang, F., Guo, C. and Liu, C.Z. (2011). Microalgal biodiesel in China: Opportunities and challenges. Applied Energy, 88(10), 3432–3437.CrossRef
Zurück zum Zitat Lim, J.K., Chieh, D.C.J., Jalak, S.A., Toh, P.Y., Yasin, N.H.M., Ng, B.W. and Ahmad, A.L. (2012). Rapid magnetophoretic separation of microalgae. Small, 8, 1683–1692.CrossRef Lim, J.K., Chieh, D.C.J., Jalak, S.A., Toh, P.Y., Yasin, N.H.M., Ng, B.W. and Ahmad, A.L. (2012). Rapid magnetophoretic separation of microalgae. Small, 8, 1683–1692.CrossRef
Zurück zum Zitat Liu, D., Li, F. and Zhang, B. (2009). Removal of algal blooms in freshwater using magnetic polymer. Water Science and Technology, 59, 1085–1092.CrossRef Liu, D., Li, F. and Zhang, B. (2009). Removal of algal blooms in freshwater using magnetic polymer. Water Science and Technology, 59, 1085–1092.CrossRef
Zurück zum Zitat Lundquist, T.J., Woertz, I.C., Quinn, N.W.T. and Benemann, J.R. (2010). A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, University of California, Berkeley. Lundquist, T.J., Woertz, I.C., Quinn, N.W.T. and Benemann, J.R. (2010). A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, University of California, Berkeley.
Zurück zum Zitat McGarry, M.G. and Durrani, S.M.A. (1970). Flotation as a method of harvesting algae from ponds. Research program report No. 5. Asian Institute of Technology, Bangkok. McGarry, M.G. and Durrani, S.M.A. (1970). Flotation as a method of harvesting algae from ponds. Research program report No. 5. Asian Institute of Technology, Bangkok.
Zurück zum Zitat Mendez, M., Behnke, C., Poon, Y. and Lee, P. (2010). Induction of flocculation in photosynthetic organisms. WO 2009158658. Mendez, M., Behnke, C., Poon, Y. and Lee, P. (2010). Induction of flocculation in photosynthetic organisms. WO 2009158658.
Zurück zum Zitat Mohn, F.H. (1980). Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef, B., Solder, C.J. (Eds), Algae Biomass. Elsevier, Amsterdam, pp. 547–571. Mohn, F.H. (1980). Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef, B., Solder, C.J. (Eds), Algae Biomass. Elsevier, Amsterdam, pp. 547–571.
Zurück zum Zitat Mohn, F.H. and Soeder, C.J. (1978). Improved technologies for harvesting and processing of microalgae and their impact on production costs. Archives in Hydrobiology Bech Ergebn Lemnology, 11, 228–253. Mohn, F.H. and Soeder, C.J. (1978). Improved technologies for harvesting and processing of microalgae and their impact on production costs. Archives in Hydrobiology Bech Ergebn Lemnology, 11, 228–253.
Zurück zum Zitat Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A. and Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20, 491–515.CrossRef Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A. and Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20, 491–515.CrossRef
Zurück zum Zitat Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J. and Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114, 199–210.CrossRef Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J. and Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114, 199–210.CrossRef
Zurück zum Zitat Moraine, R., Shelef, G., Sandbank, E., Bar Moshe, Z. and Schwarbard, L. (1980). Recovery of sewage borne algae: Flocculation and centrifugation techniques. In: Shelef, G., Solder, C.J. (Eds), Algae Biomass. Elsevier, North Holland. Moraine, R., Shelef, G., Sandbank, E., Bar Moshe, Z. and Schwarbard, L. (1980). Recovery of sewage borne algae: Flocculation and centrifugation techniques. In: Shelef, G., Solder, C.J. (Eds), Algae Biomass. Elsevier, North Holland.
Zurück zum Zitat Morweiser, M., Kruse, O., Hankamer, B. and Posten, C. (2010). Developments and perspectives of photobioreactors for biofuel production. Applied Microbiology and Biotechnology, 87, 1291–1301.CrossRef Morweiser, M., Kruse, O., Hankamer, B. and Posten, C. (2010). Developments and perspectives of photobioreactors for biofuel production. Applied Microbiology and Biotechnology, 87, 1291–1301.CrossRef
Zurück zum Zitat Pearsall, R.V., Connelly, R.L., Fountain, M.E., Hearn, C.S., Werst, M.D., Hebner, R.E. and Kelley, E.F. (2011). Electrically dewatering microalgae. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1578–1583.CrossRef Pearsall, R.V., Connelly, R.L., Fountain, M.E., Hearn, C.S., Werst, M.D., Hebner, R.E. and Kelley, E.F. (2011). Electrically dewatering microalgae. IEEE Transactions on Dielectrics and Electrical Insulation, 18, 1578–1583.CrossRef
Zurück zum Zitat Petrusevski, B., Bolier, G., van Breemen, A.N. and Alaerts, G.J. (1995). Tangential flow filtration: A method to concentrate freshwater algae. Water Research, 29, 1419–1424.CrossRef Petrusevski, B., Bolier, G., van Breemen, A.N. and Alaerts, G.J. (1995). Tangential flow filtration: A method to concentrate freshwater algae. Water Research, 29, 1419–1424.CrossRef
Zurück zum Zitat Phoochinda, W. and White, D.A. (2003). Removal of algae using froth flotation. Environmental Technology, 24, 87–96.CrossRef Phoochinda, W. and White, D.A. (2003). Removal of algae using froth flotation. Environmental Technology, 24, 87–96.CrossRef
Zurück zum Zitat Phoochinda, W., White, D.A. and Briscoe, B.J. (2004). An algal removal using a combination of flocculation and flotation process. Environmental Technology, 25, 1385–1395.CrossRef Phoochinda, W., White, D.A. and Briscoe, B.J. (2004). An algal removal using a combination of flocculation and flotation process. Environmental Technology, 25, 1385–1395.CrossRef
Zurück zum Zitat Poelman, E., DePauw, N. and Jeurissen, B. (1997). Potential of electrolytic flocculation for recovery of micro-algae. Resources Conservation and Recycling, 19, 1–10.CrossRef Poelman, E., DePauw, N. and Jeurissen, B. (1997). Potential of electrolytic flocculation for recovery of micro-algae. Resources Conservation and Recycling, 19, 1–10.CrossRef
Zurück zum Zitat Rawat, I., Kumar, R.R., Mutanda, T. and Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.CrossRef Rawat, I., Kumar, R.R., Mutanda, T. and Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.CrossRef
Zurück zum Zitat Reynolds, J.H., Middlebrooks, E.J., Porcella, D.B. and Grenney, W.J. (1975). Effects of temperature on oil refinery waste toxicity. Journal of Water Pollution Control Federation, 46, 2674–2693. Reynolds, J.H., Middlebrooks, E.J., Porcella, D.B. and Grenney, W.J. (1975). Effects of temperature on oil refinery waste toxicity. Journal of Water Pollution Control Federation, 46, 2674–2693.
Zurück zum Zitat Rossi, N., Jaouen, O., Legentilhomme, P. and Petit, I. (2004). Harvesting of cyanobacterium Arthospira platensis using organic filtration membranes. Food and Bioproducts Processing, 82, 244–250.CrossRef Rossi, N., Jaouen, O., Legentilhomme, P. and Petit, I. (2004). Harvesting of cyanobacterium Arthospira platensis using organic filtration membranes. Food and Bioproducts Processing, 82, 244–250.CrossRef
Zurück zum Zitat Rossignol, N., Vandanjon, L., Jaouen, O. and Quemeneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross flow microfiltration and ultrafiltration. Aquaculture Engineering, 20, 191–208.CrossRef Rossignol, N., Vandanjon, L., Jaouen, O. and Quemeneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross flow microfiltration and ultrafiltration. Aquaculture Engineering, 20, 191–208.CrossRef
Zurück zum Zitat Rwehumbiza, V.M., Harrison, R. and Thomsen, L. (2012). Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal, 200–202, 168–175.CrossRef Rwehumbiza, V.M., Harrison, R. and Thomsen, L. (2012). Alum-induced flocculation of preconcentrated Nannochloropsis salina: Residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chemical Engineering Journal, 200–202, 168–175.CrossRef
Zurück zum Zitat Salim, S., Bosma, R., Vermue, M.H. and Wijffels, R.H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23, 849–855.CrossRef Salim, S., Bosma, R., Vermue, M.H. and Wijffels, R.H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23, 849–855.CrossRef
Zurück zum Zitat Salim, S., Vermuë, M.H. and Wijffels, R.H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118, 49–55.CrossRef Salim, S., Vermuë, M.H. and Wijffels, R.H. (2012). Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresource Technology, 118, 49–55.CrossRef
Zurück zum Zitat Sandbank, E. (1979). Harvesting of microalgae from wastewater stabilization pond effluents and their utilization as a fish feed. D.Sc. thesis presented to the senate of the Technion – Israel Institute of Technology. Sandbank, E. (1979). Harvesting of microalgae from wastewater stabilization pond effluents and their utilization as a fish feed. D.Sc. thesis presented to the senate of the Technion – Israel Institute of Technology.
Zurück zum Zitat Sandbank, E., Shelef, G. and Wachs, A.M. (1974). Improved electroflotation for the removal of suspended solids from algae pond effluents. Water Research, 8, 587–592.CrossRef Sandbank, E., Shelef, G. and Wachs, A.M. (1974). Improved electroflotation for the removal of suspended solids from algae pond effluents. Water Research, 8, 587–592.CrossRef
Zurück zum Zitat Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.CrossRef Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.CrossRef
Zurück zum Zitat Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S. and Gressel, J. (2012). Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnology Advances, 30, 1023–1030.CrossRef Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S. and Gressel, J. (2012). Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnology Advances, 30, 1023–1030.CrossRef
Zurück zum Zitat Scholz, M., Hoshino, T., Johnson, D., Riley, M.R. and Cuello, J.L. (2011). Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass and Bioenergy, 35, 4835–4840.CrossRef Scholz, M., Hoshino, T., Johnson, D., Riley, M.R. and Cuello, J.L. (2011). Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol. Biomass and Bioenergy, 35, 4835–4840.CrossRef
Zurück zum Zitat Shelef, G., Azov, Y., Moreine, R. and Oron, G. (1980). Algae mass production as an integral part of a wastewater treatment and reclamation system. In: Shelef, B., Solder, C.J. (Eds.), Algae Biomass. Elsevier, North Holland. Shelef, G., Azov, Y., Moreine, R. and Oron, G. (1980). Algae mass production as an integral part of a wastewater treatment and reclamation system. In: Shelef, B., Solder, C.J. (Eds.), Algae Biomass. Elsevier, North Holland.
Zurück zum Zitat Shelef, G., Sukenik, A. and Green, M. (1984). Microalgae harvesting and processing: A literature review. Report prepared for the US Department of Energy, Technion Research and Development Foundation Ltd., Haifa, Israel. Shelef, G., Sukenik, A. and Green, M. (1984). Microalgae harvesting and processing: A literature review. Report prepared for the US Department of Energy, Technion Research and Development Foundation Ltd., Haifa, Israel.
Zurück zum Zitat Show, K.Y., Lee, D.J. and Chang, J.S. (2013). Algal biomass dehydration. Bioresource Technology, 135, 720–729.CrossRef Show, K.Y., Lee, D.J. and Chang, J.S. (2013). Algal biomass dehydration. Bioresource Technology, 135, 720–729.CrossRef
Zurück zum Zitat Spilling, K., Seppälä, J. and Tamminen, T. (2011). Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. Journal of Applied Phycology, 23, 959–966.CrossRef Spilling, K., Seppälä, J. and Tamminen, T. (2011). Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. Journal of Applied Phycology, 23, 959–966.CrossRef
Zurück zum Zitat Su, Y., Mennerich, A. and Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45, 3351–3358.CrossRef Su, Y., Mennerich, A. and Urban, B. (2011). Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Research, 45, 3351–3358.CrossRef
Zurück zum Zitat Taylor, R.L., Rand, J.D. and Caldwell, G.S. (2012). Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata – A candidate for biofuel production. Mar. Biotechnol., 6, 774–781.CrossRef Taylor, R.L., Rand, J.D. and Caldwell, G.S. (2012). Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata – A candidate for biofuel production. Mar. Biotechnol., 6, 774–781.CrossRef
Zurück zum Zitat Teixeira, C.M.L.L., Kirsten, F.V. and Teixeira, P.C.N. (2012). Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. Journal of Applied Phycology, 24, 557–563.CrossRef Teixeira, C.M.L.L., Kirsten, F.V. and Teixeira, P.C.N. (2012). Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. Journal of Applied Phycology, 24, 557–563.CrossRef
Zurück zum Zitat Tenney, M.W., Echelberger, W.F., Schuessler, R.G. and Pavpni, J.L. (1969). Algal flocculation with synthetic organic polyelectrolytes. Applied Bacteriology, 18, 965–971. Tenney, M.W., Echelberger, W.F., Schuessler, R.G. and Pavpni, J.L. (1969). Algal flocculation with synthetic organic polyelectrolytes. Applied Bacteriology, 18, 965–971.
Zurück zum Zitat Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010a). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of renewable and sustainable energy, 2(1), 012701.CrossRef Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., & Hoadley, A. (2010a). Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of renewable and sustainable energy, 2(1), 012701.CrossRef
Zurück zum Zitat Uduman, N., Qi, Y., Danquah, M.K. and Hoadley, A.F. (2010b). Marine microalgae flocculation and focussed beam reflectance measurement. Chemical Engineering Journal, 162, 935–940.CrossRef Uduman, N., Qi, Y., Danquah, M.K. and Hoadley, A.F. (2010b). Marine microalgae flocculation and focussed beam reflectance measurement. Chemical Engineering Journal, 162, 935–940.CrossRef
Zurück zum Zitat Van Den Hende, S., Vervaeren, H., Saveyn, H., Maes, G. and Boon, N. (2011). Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. Biotechnology and Bioengineering, 108, 549–558.CrossRef Van Den Hende, S., Vervaeren, H., Saveyn, H., Maes, G. and Boon, N. (2011). Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. Biotechnology and Bioengineering, 108, 549–558.CrossRef
Zurück zum Zitat Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in biotechnology, 31(4), 233–239.CrossRef Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in biotechnology, 31(4), 233–239.CrossRef
Zurück zum Zitat Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B. and Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119.CrossRef Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B. and Muylaert, K. (2012). Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 105, 114–119.CrossRef
Zurück zum Zitat Vandamme, D., Foubert, I., Meesschaert, B. and Muylaert, K. (2010). Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 22, 525–530.CrossRef Vandamme, D., Foubert, I., Meesschaert, B. and Muylaert, K. (2010). Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 22, 525–530.CrossRef
Zurück zum Zitat Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Jan Pinoy, L.J. and Muylaert, K. (2011). Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering, 108, 2320–2329.CrossRef Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Jan Pinoy, L.J. and Muylaert, K. (2011). Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering, 108, 2320–2329.CrossRef
Zurück zum Zitat Wettman, J.W. and Cravens, J.B. (1980). Cost effective lagoon upgrading with microscreens. Proceedings of the 3rd Annual Pollution Control Association, Oklahoma, June 5, 1980. Wettman, J.W. and Cravens, J.B. (1980). Cost effective lagoon upgrading with microscreens. Proceedings of the 3rd Annual Pollution Control Association, Oklahoma, June 5, 1980.
Zurück zum Zitat Wijffels, R.H., Barbosa, M.J. and Eppink, M.H.M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining, 4, 287–295.CrossRef Wijffels, R.H., Barbosa, M.J. and Eppink, M.H.M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining, 4, 287–295.CrossRef
Zurück zum Zitat Wilde, E.W., Benemann, J.R., Weissman, J.C. and Tillett, D.M. (1991). Cultivation of algae and nutrient removal in a waste heat utilization process. Journal of Applied Phycology, 3, 159–167.CrossRef Wilde, E.W., Benemann, J.R., Weissman, J.C. and Tillett, D.M. (1991). Cultivation of algae and nutrient removal in a waste heat utilization process. Journal of Applied Phycology, 3, 159–167.CrossRef
Zurück zum Zitat Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. and Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 110, 496–502.CrossRef Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y. and Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 110, 496–502.CrossRef
Zurück zum Zitat Wyatt, N.B., Gloe, L.M., Brady, P.V., Hewson, J.C., Grillet, A.M., Hankins, M.G. and Pohl, P.I. (2012). Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnology and Bioengineering, 109, 493–501.CrossRef Wyatt, N.B., Gloe, L.M., Brady, P.V., Hewson, J.C., Grillet, A.M., Hankins, M.G. and Pohl, P.I. (2012). Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnology and Bioengineering, 109, 493–501.CrossRef
Zurück zum Zitat Xu, L., Guo, C., Wang, F., Zheng, S. and Liu, C.Z. (2011). A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresource Technology, 102, 10047–10051.CrossRef Xu, L., Guo, C., Wang, F., Zheng, S. and Liu, C.Z. (2011). A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresource Technology, 102, 10047–10051.CrossRef
Zurück zum Zitat Zhang, J. and Hu, B. (2012). A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology, 114, 529–535.CrossRef Zhang, J. and Hu, B. (2012). A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology, 114, 529–535.CrossRef
Zurück zum Zitat Zhang, X. et al. (2012). Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresource Technology, 37, 166–176. Zhang, X. et al. (2012). Influence of growth phase on harvesting of Chlorella zofingiensis by dissolved air flotation. Bioresource Technology, 37, 166–176.
Zurück zum Zitat Zhang, G., Zhang, P., & Fan, M. (2009). Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Ultrasonics sonochemistry, 16(3), 334–338.CrossRef Zhang, G., Zhang, P., & Fan, M. (2009). Ultrasound-enhanced coagulation for Microcystis aeruginosa removal. Ultrasonics sonochemistry, 16(3), 334–338.CrossRef
Zurück zum Zitat Zheng, H., Gao, Z., Yin, J., Tang, X., Ji, X. and Huang, H. (2012). Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, 112, 212–220.CrossRef Zheng, H., Gao, Z., Yin, J., Tang, X., Ji, X. and Huang, H. (2012). Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, 112, 212–220.CrossRef
Zurück zum Zitat Zhou, W., Cheng, Y., Li, Y., Wan, Y., Liu, Y., Lin, X. and Ruan, R. (2012). Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology, 167, 214–228.CrossRef Zhou, W., Cheng, Y., Li, Y., Wan, Y., Liu, Y., Lin, X. and Ruan, R. (2012). Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Applied Biochemistry and Biotechnology, 167, 214–228.CrossRef
Metadaten
Titel
Improvement of Harvesting Technology for Algal Biomass Production
verfasst von
Supratim Ghosh
Debabrata Das
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22813-6_8