Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Regular Paper | Ausgabe 3/2015

Knowledge and Information Systems 3/2015

Improving contextual advertising matching by using Wikipedia thesaurus knowledge

Zeitschrift:
Knowledge and Information Systems > Ausgabe 3/2015
Autoren:
Guandong Xu, Zongda Wu, Guiling Li, Enhong Chen

Abstract

As a prevalent type of Web advertising, contextual advertising refers to the placement of the most relevant commercial ads within the content of a Web page, to provide a better user experience and as a result increase the user’s ad-click rate. However, due to the intrinsic problems of homonymy and polysemy, the low intersection of keywords, and a lack of sufficient semantics, traditional keyword matching techniques are not able to effectively handle contextual matching and retrieve relevant ads for the user, resulting in an unsatisfactory performance in ad selection. In this paper, we introduce a new contextual advertising approach to overcome these problems, which uses Wikipedia thesaurus knowledge to enrich the semantic expression of a target page (or an ad). First, we map each page into a keyword vector, upon which two additional feature vectors, the Wikipedia concept and category vector derived from the Wikipedia thesaurus structure, are then constructed. Second, to determine the relevant ads for a given page, we propose a linear similarity fusion mechanism, which combines the above three feature vectors in a unified manner. Last, we validate our approach using a set of real ads, real pages along with the external Wikipedia thesaurus. The experimental results show that our approach outperforms the conventional contextual advertising matching approaches and can substantially improve the performance of ad selection.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Knowledge and Information Systems 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise