Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Natural Computing 3/2021

05.01.2021

Improving convergence in swarm algorithms by controlling range of random movement

verfasst von: Reshu Chaudhary, Hema Banati

Erschienen in: Natural Computing | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Swarm intelligence algorithms are stochastic algorithms, i.e. they perform some random movement. This random movement imparts the algorithms with exploration capabilities and allows them to escape local optima. Exploration at the start of execution helps with thorough inspection of the search/solution space. However, as the algorithm progresses, the focus should ideally shift from exploration to exploitation. This shift would help the algorithm to enhance existing solutions and improve its convergence capabilities. Hence if the range of random movement is not kept in check, it may limit an algorithm’s convergence capabilities and overall efficiency. To ensure that the convergence of an algorithm is not compromised, an improved search technique to reduce range of uniform random movement was recently proposed for bat algorithm. Uniform distribution and levy distribution are the most commonly used random distributions in swarm algorithms. In this paper, the applicability of the improved search technique over different swarm algorithms employing uniform and levy distributions, as well as Cauchy distribution has been studied. The selected algorithms are firefly algorithm, cuckoo search algorithm, moth search algorithm, whale optimization algorithm, earthworm optimization algorithm and elephant herding optimization algorithm. The resultant variants of each of these algorithms show improvement upon inclusion of the improved search technique. Hence results establish that the improved search technique has positive influence over swarm algorithms employing different random distributions.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
Zurück zum Zitat Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming: an introduction. Morgan Kaufmann, San Francisco CrossRef Banzhaf W, Nordin P, Keller RE, Francone FD (1998) Genetic programming: an introduction. Morgan Kaufmann, San Francisco CrossRef
Zurück zum Zitat Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford CrossRef Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford CrossRef
Zurück zum Zitat Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32:319–326 MATH Cagnina LC, Esquivel SC, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32:319–326 MATH
Zurück zum Zitat De Jong KA (2006) Evolutionary computation: a unified approach. The MIT Press, Cambridge MATH De Jong KA (2006) Evolutionary computation: a unified approach. The MIT Press, Cambridge MATH
Zurück zum Zitat Dorigo M, Caro GD (1999) The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, London Dorigo M, Caro GD (1999) The ant colony optimization meta-heuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, London
Zurück zum Zitat El-Abd M, Kamel M (2005) A taxonomy of cooperative search algorithms. In: Proceeding of international workshop on hybrid metaheuristics, Barcelona, Spain, pp 32–41 El-Abd M, Kamel M (2005) A taxonomy of cooperative search algorithms. In: Proceeding of international workshop on hybrid metaheuristics, Barcelona, Spain, pp 32–41
Zurück zum Zitat Fogel DB (1991) System identification through simulated evolution: a machine learning approach to modeling. Ginn Press, New York Fogel DB (1991) System identification through simulated evolution: a machine learning approach to modeling. Ginn Press, New York
Zurück zum Zitat Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, Piscataway MATH Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, Piscataway MATH
Zurück zum Zitat Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester MATH Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester MATH
Zurück zum Zitat Ghosh A, Tsutsui S (eds) (2003) Advances in evolutionary computation: theory and applications. Springer, Berlin Ghosh A, Tsutsui S (eds) (2003) Advances in evolutionary computation: theory and applications. Springer, Berlin
Zurück zum Zitat Hashmi A, Goel N, Goel S, Gupta D (2013) Firefly algorithm for unconstrained optimization. IOSR J Comput Eng 11(1):75–78 CrossRef Hashmi A, Goel N, Goel S, Gupta D (2013) Firefly algorithm for unconstrained optimization. IOSR J Comput Eng 11(1):75–78 CrossRef
Zurück zum Zitat Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
Zurück zum Zitat Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res 137(1):1–9 CrossRef Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res 137(1):1–9 CrossRef
Zurück zum Zitat Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471 MathSciNetCrossRef Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471 MathSciNetCrossRef
Zurück zum Zitat Koza JR (1994) Introduction to genetic programming. In: Kinnear KE Jr (ed) Advances in genetic programming. MIT Press, Cambridge, pp 21–42 Koza JR (1994) Introduction to genetic programming. In: Kinnear KE Jr (ed) Advances in genetic programming. MIT Press, Cambridge, pp 21–42
Zurück zum Zitat Mitchell M (1996) Introduction to genetic algorithms. MIT Press, Cambridge Mitchell M (1996) Introduction to genetic algorithms. MIT Press, Cambridge
Zurück zum Zitat Price KV (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover V (eds) New ideas in optimization. McGraw-Hill, London, pp 79–108 Price KV (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover V (eds) New ideas in optimization. McGraw-Hill, London, pp 79–108
Zurück zum Zitat Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, New York CrossRef Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, New York CrossRef
Zurück zum Zitat Simon D (2013) Evolutionary optimization algorithms. Wiley Press, New York Simon D (2013) Evolutionary optimization algorithms. Wiley Press, New York
Zurück zum Zitat Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, Berkeley Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, Berkeley
Zurück zum Zitat Yang XS (2016) Nature-inspired optimization algorithms. Elsevier Press, Amsterdam MATH Yang XS (2016) Nature-inspired optimization algorithms. Elsevier Press, Amsterdam MATH
Zurück zum Zitat Yu X, Gen M (2010) Introduction to evolutionary algorithms, 2nd edn. Springer, Berlin CrossRef Yu X, Gen M (2010) Introduction to evolutionary algorithms, 2nd edn. Springer, Berlin CrossRef
Metadaten
Titel
Improving convergence in swarm algorithms by controlling range of random movement
verfasst von
Reshu Chaudhary
Hema Banati
Publikationsdatum
05.01.2021
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 3/2021
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-020-09826-y

Weitere Artikel der Ausgabe 3/2021

Natural Computing 3/2021 Zur Ausgabe

Premium Partner