Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2020

20.05.2020 | Research Paper

Improving energy harvesting by internal resonance in a spring-pendulum system

verfasst von: Wenan Jiang, Xiujing Han, Liqun Chen, Qinsheng Bi

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a two-to-one internal resonance to widen the bandwidth of vibratory energy harvesters. To describe the improved characteristic, an electromagnetic spring-pendulum harvester is designed. Approximate analytical solutions of the electromechanical coupled system are carried out by introducing the method of multiple scales, and the frequency response relationships of the displacement and the current are obtained. The character of broadband harvesting performance is examined, the two peaks and double jump phenomena for variation of design parameters were observed. The effect of key control parameters on the harvesters bandwidth is considered, and the nonlinear behaviors of the harvester are validated via numerical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Challa, V., Prasad, M., Shi, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 75, 015035 (2008) Challa, V., Prasad, M., Shi, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 75, 015035 (2008)
2.
Zurück zum Zitat Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006) Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006)
3.
Zurück zum Zitat Harne, R., Wang, K.C.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 24, 023001 (2013) Harne, R., Wang, K.C.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 24, 023001 (2013)
4.
Zurück zum Zitat Daqaq, M.F., Masana, R., Erturk, A., et al.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014) Daqaq, M.F., Masana, R., Erturk, A., et al.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)
5.
Zurück zum Zitat Zhang, Y.W., Wang, C., Yuan, B., et al.: Integration of geometrical and material nonlinear energy sink with piezoelectric material energy harvester. Shock Vib. 2017, 1987456 (2017) Zhang, Y.W., Wang, C., Yuan, B., et al.: Integration of geometrical and material nonlinear energy sink with piezoelectric material energy harvester. Shock Vib. 2017, 1987456 (2017)
6.
Zurück zum Zitat Zou, H.X., Zhang, W.M., Li, W.B., et al.: Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manage. 148, 1391–1398 (2017) Zou, H.X., Zhang, W.M., Li, W.B., et al.: Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manage. 148, 1391–1398 (2017)
7.
Zurück zum Zitat Zou, H.X., Zhang, W.M., Li, W.B., et al.: A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Appl. Phys. Lett. 110, 163904 (2017) Zou, H.X., Zhang, W.M., Li, W.B., et al.: A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Appl. Phys. Lett. 110, 163904 (2017)
8.
Zurück zum Zitat Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)MathSciNetMATH Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)MathSciNetMATH
9.
Zurück zum Zitat Zoka, H., Afsharfard, A.: Double stiffness vibration suppressor and energy harvester: an experimental study. Mech. Syst. Signal. Process. 121, 1–13 (2019) Zoka, H., Afsharfard, A.: Double stiffness vibration suppressor and energy harvester: an experimental study. Mech. Syst. Signal. Process. 121, 1–13 (2019)
10.
Zurück zum Zitat Ooi, B.L., Gilbert, J.M., Aziz, A.R.A.: Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications. Acta Mech. Sin. 32, 670–683 (2016)MATH Ooi, B.L., Gilbert, J.M., Aziz, A.R.A.: Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications. Acta Mech. Sin. 32, 670–683 (2016)MATH
12.
Zurück zum Zitat Fang, F., Xia, G.H., Wang, J.G.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)MathSciNetMATH Fang, F., Xia, G.H., Wang, J.G.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mech. Sin. 34, 561–577 (2018)MathSciNetMATH
13.
Zurück zum Zitat Cao, D.X., Gao, Y.H., Hu, W.H.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta Mech. Sin. 35, 894–911 (2019)MathSciNet Cao, D.X., Gao, Y.H., Hu, W.H.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta Mech. Sin. 35, 894–911 (2019)MathSciNet
14.
Zurück zum Zitat Yuan, T.C., Yang, J., Chen, L.Q.: Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35, 912–925 (2019)MathSciNet Yuan, T.C., Yang, J., Chen, L.Q.: Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta Mech. Sin. 35, 912–925 (2019)MathSciNet
15.
Zurück zum Zitat Yu, L.D., Tang, L.H., Yang, T.J.: Experimental investigation of a passive self-tuning resonator based on a beam-slider structure. Acta Mech. Sin. 35, 1079–1092 (2019) Yu, L.D., Tang, L.H., Yang, T.J.: Experimental investigation of a passive self-tuning resonator based on a beam-slider structure. Acta Mech. Sin. 35, 1079–1092 (2019)
16.
Zurück zum Zitat Guo, X.Y., Wang, S.B., Sun, L., et al.: Dynamic responses of a piezoelectric cantilever plate under high-low excitations. Acta Mech. Sin. 36, 234–244 (2020) Guo, X.Y., Wang, S.B., Sun, L., et al.: Dynamic responses of a piezoelectric cantilever plate under high-low excitations. Acta Mech. Sin. 36, 234–244 (2020)
17.
Zurück zum Zitat Zhang, Y.S., Zheng, R.C., Nakano, K., et al.: Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Appl. Phys. Lett. 112, 143901 (2018) Zhang, Y.S., Zheng, R.C., Nakano, K., et al.: Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Appl. Phys. Lett. 112, 143901 (2018)
18.
Zurück zum Zitat Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009) Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)
19.
Zurück zum Zitat Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011) Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)
20.
Zurück zum Zitat Wang, F.Y., Tang, L.H.: Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal Process. 86, 29–39 (2017) Wang, F.Y., Tang, L.H.: Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal Process. 86, 29–39 (2017)
21.
Zurück zum Zitat Zou, H.X., Zhang, W.M., Wei, K.X., et al.: A compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms. J. Appl. Mech. 83, 121005 (2016) Zou, H.X., Zhang, W.M., Wei, K.X., et al.: A compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms. J. Appl. Mech. 83, 121005 (2016)
22.
Zurück zum Zitat Lan, C.B., Qin, W.Y.: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mech. Syst. Signal Process. 85, 71–81 (2017) Lan, C.B., Qin, W.Y.: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mech. Syst. Signal Process. 85, 71–81 (2017)
23.
Zurück zum Zitat Zhou, Z.Y., Qin, W.Y., Du, W.F., et al.: Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mech. Syst. Signal Process. 115, 162–172 (2019) Zhou, Z.Y., Qin, W.Y., Du, W.F., et al.: Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mech. Syst. Signal Process. 115, 162–172 (2019)
24.
Zurück zum Zitat Cao, J.Y., Zhou, S.X., Wang, W., et al.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106, 173903 (2015) Cao, J.Y., Zhou, S.X., Wang, W., et al.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106, 173903 (2015)
25.
Zurück zum Zitat Panyamn, M., Daqaq, M.F.: Characterizing the effective bandwidth of tristable energy harvesters. J. Sound Vib. 386, 336–358 (2017) Panyamn, M., Daqaq, M.F.: Characterizing the effective bandwidth of tristable energy harvesters. J. Sound Vib. 386, 336–358 (2017)
26.
Zurück zum Zitat Zhou, Z.Y., Qin, W.Y., Zhu, P.: A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech. Syst. Signal Process. 84, 158–168 (2017) Zhou, Z.Y., Qin, W.Y., Zhu, P.: A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech. Syst. Signal Process. 84, 158–168 (2017)
27.
Zurück zum Zitat Wang, A., Zhang, Q.C., Wang, W., et al.: A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal Process. 112, 305–318 (2018) Wang, A., Zhang, Q.C., Wang, W., et al.: A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal Process. 112, 305–318 (2018)
28.
Zurück zum Zitat Yang, R., Cao, Q.J.: Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. J. Stat. Mech. Theory Exp. 033405 (2019) Yang, R., Cao, Q.J.: Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. J. Stat. Mech. Theory Exp. 033405 (2019)
29.
Zurück zum Zitat Li, H.T., Qin, W.Y.: Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dyn. 81, 1751–1757 (2015)MathSciNet Li, H.T., Qin, W.Y.: Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dyn. 81, 1751–1757 (2015)MathSciNet
30.
Zurück zum Zitat Li, F.T., Qin, W.Y., Lan, C.B., et al.: Dynamics and coherence resonance of tristable energy harvesting system. Smart Mater. Struct. 25, 015001 (2016) Li, F.T., Qin, W.Y., Lan, C.B., et al.: Dynamics and coherence resonance of tristable energy harvesting system. Smart Mater. Struct. 25, 015001 (2016)
31.
Zurück zum Zitat Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. J. Appl. Mech. 82, 031004 (2015) Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. J. Appl. Mech. 82, 031004 (2015)
32.
Zurück zum Zitat Chen, L.Q., Jiang, W.A.: A piezoelectric energy harvester based on internal resonance. Acta. Mech. Sin. 31, 223–228 (2015)MathSciNetMATH Chen, L.Q., Jiang, W.A.: A piezoelectric energy harvester based on internal resonance. Acta. Mech. Sin. 31, 223–228 (2015)MathSciNetMATH
33.
Zurück zum Zitat Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015) Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015)
34.
Zurück zum Zitat Jiang, W.A., Chen, L.Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85, 2507–2520 (2016) Jiang, W.A., Chen, L.Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85, 2507–2520 (2016)
35.
Zurück zum Zitat Chen, L.Q., Jiang, W.A., Panyam, M., et al.: A broadband internally-resonant vibratory energy harvester. J. Acoust. Vib. 138, 061007 (2016) Chen, L.Q., Jiang, W.A., Panyam, M., et al.: A broadband internally-resonant vibratory energy harvester. J. Acoust. Vib. 138, 061007 (2016)
36.
Zurück zum Zitat Yang, W., Towfighian, S.: Internal resonance and low frequency vibration energy harvesting. Smart Mater. Struct. 26, 095008 (2017) Yang, W., Towfighian, S.: Internal resonance and low frequency vibration energy harvesting. Smart Mater. Struct. 26, 095008 (2017)
37.
Zurück zum Zitat Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process. 90, 317–333 (2017) Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process. 90, 317–333 (2017)
38.
Zurück zum Zitat Xiong, L.Y., Tang, L.T., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91, 1817–1834 (2018) Xiong, L.Y., Tang, L.T., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91, 1817–1834 (2018)
39.
Zurück zum Zitat Liu, H.J., Gao, X.M.: Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dyn. 96, 1067–1081 (2019) Liu, H.J., Gao, X.M.: Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dyn. 96, 1067–1081 (2019)
40.
Zurück zum Zitat Yan, Z.M., Taha, H., Tan, T.: Nonlinear characteristics of an autoparametric vibration system. J. Sound Vib. 390, 1–22 (2017) Yan, Z.M., Taha, H., Tan, T.: Nonlinear characteristics of an autoparametric vibration system. J. Sound Vib. 390, 1–22 (2017)
41.
Zurück zum Zitat Yan, Z.M., Hajj, M.: Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester. J. Intel. Mater. Syst. Struct. 28, 254–271 (2017) Yan, Z.M., Hajj, M.: Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester. J. Intel. Mater. Syst. Struct. 28, 254–271 (2017)
42.
Zurück zum Zitat Nie, X.C., Tan, T., Yan, Z.M., et al.: Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance. Int. J. Mech. Sci. 159, 287–305 (2019) Nie, X.C., Tan, T., Yan, Z.M., et al.: Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance. Int. J. Mech. Sci. 159, 287–305 (2019)
43.
Zurück zum Zitat Tan, T., Yan, Z.M., Zou, Y., et al.: Optimal dual-functional design for a piezoelectric autoparametric vibration absorber. Mech. Syst. Signal Process. 123, 513–532 (2019) Tan, T., Yan, Z.M., Zou, Y., et al.: Optimal dual-functional design for a piezoelectric autoparametric vibration absorber. Mech. Syst. Signal Process. 123, 513–532 (2019)
44.
Zurück zum Zitat Goldberger, A.L., Shabetai, R., Bhargava, V., et al.: Nonlinear dynamics, electrical alternans, and pericardial tamponade. Am Heart J. 107, 1297–1299 (1984) Goldberger, A.L., Shabetai, R., Bhargava, V., et al.: Nonlinear dynamics, electrical alternans, and pericardial tamponade. Am Heart J. 107, 1297–1299 (1984)
45.
Zurück zum Zitat Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronautics 7, 145–152 (1973) Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronautics 7, 145–152 (1973)
46.
Zurück zum Zitat Lee, W.K.: Domains of attraction of system of nonlinearly coupled ship motions by simple cell mapping. J. Offshore Mech. Arct. 114, 22–27 (1992) Lee, W.K.: Domains of attraction of system of nonlinearly coupled ship motions by simple cell mapping. J. Offshore Mech. Arct. 114, 22–27 (1992)
47.
Zurück zum Zitat Ciocanel, V.: Modeling and numerical simulation of the nonlinear dynamics of the forced planar string pendulum. Dissertation, Duke University (2012) Ciocanel, V.: Modeling and numerical simulation of the nonlinear dynamics of the forced planar string pendulum. Dissertation, Duke University (2012)
48.
Zurück zum Zitat Sethna, P.R.: Vibrations of dynamical systems with quadratic nonlinearities. J. Appl. Mech. 32, 576–582 (1965)MathSciNet Sethna, P.R.: Vibrations of dynamical systems with quadratic nonlinearities. J. Appl. Mech. 32, 576–582 (1965)MathSciNet
49.
Zurück zum Zitat Yamamoto, R., Yasuda, K.: On the internal resonance in a nonlinear two-degree-of-freedom system. Bull. Jpn. Soc. Mech. Eng. 20, 168–175 (1977) Yamamoto, R., Yasuda, K.: On the internal resonance in a nonlinear two-degree-of-freedom system. Bull. Jpn. Soc. Mech. Eng. 20, 168–175 (1977)
50.
Zurück zum Zitat Bayly, P.V., Virgin, L.N.: An empirical study of the stability of periodic motion in the forced spring-pendulum. Proc. R. Soc. Lond. A 443, 391–408 (1993)MATH Bayly, P.V., Virgin, L.N.: An empirical study of the stability of periodic motion in the forced spring-pendulum. Proc. R. Soc. Lond. A 443, 391–408 (1993)MATH
51.
Zurück zum Zitat Lee, W.K., Hsu, C.S.: A global analysis of a harmonically excited spring pendulum system with internal resonance. J. Sound Vib. 171, 335–359 (1994)MathSciNetMATH Lee, W.K., Hsu, C.S.: A global analysis of a harmonically excited spring pendulum system with internal resonance. J. Sound Vib. 171, 335–359 (1994)MathSciNetMATH
52.
Zurück zum Zitat Lee, W.K., Park, H.D.: Chaotic dynamics of a harmonically excited spring-pendulum system with internal resonance. Nonlinear Dyn. 14, 211–229 (1997)MathSciNetMATH Lee, W.K., Park, H.D.: Chaotic dynamics of a harmonically excited spring-pendulum system with internal resonance. Nonlinear Dyn. 14, 211–229 (1997)MathSciNetMATH
Metadaten
Titel
Improving energy harvesting by internal resonance in a spring-pendulum system
verfasst von
Wenan Jiang
Xiujing Han
Liqun Chen
Qinsheng Bi
Publikationsdatum
20.05.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00945-4

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica Sinica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.