Skip to main content
Erschienen in:

01.09.2024 | Original Paper

Improving generalization performance of landslide susceptibility model considering spatial heterogeneity by using the geomorphic label-based LightGBM

verfasst von: Deliang Sun, Xiaoqing Wu, Haijia Wen, Shuxian Shi, Qingyu Gu

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Previous landslide susceptibility assessments often overlook the heterogeneity of landslides across different regions and their generalization ability. The objective of this study was to explore the landslide susceptibility model from geomorphic zones-based K-means constructed sub-regions to geomorphic label-based matching whole regions. To achieve this, we divided the study area into slope units based on curvature calculation and utilized a Light Gradient Boosting Machine (LightGBM) to construct the susceptibility model. For model training, we randomly selected fourteen townships in Fengjie County, Chongqing, China. By employing K-means clustering, we established geomorphic zones for the landslide susceptibility model, which were assigned a corresponding geomorphic label. Notably, the model divided the entire study area into four geomorphic zones, with zone 4 demonstrating the highest accuracy of 0.85. Additionally, we developed two comparative models to assess the effectiveness of our proposed approach. The first comparative model considered only ten conditioning factors, resulting in a model accuracy of 0.73. The second comparative model incorporated the classification results of geomorphic labels as explanatory variables for landslides and achieved a model accuracy of 0.75. In this study, we successfully established a model with an accuracy of 0.87 by automatically matching and generalizing the remaining townships with the existing geomorphic labels. Our findings suggest that a geomorphic label-based model, adopting a framework from sub-regions to the whole region, offers better quantification of the landslide occurrence mechanism in the region and demonstrates stronger generalization ability compared to the overall-based model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Canavesi V, Segoni S, Rosi A, Ting X, Nery T, Catani F, Casagli N (2020) Different Approaches to Use Morphometric Attributes in Landslide Susceptibility Mapping Based on Meso-Scale Spatial Units: A Case Study in Rio de Janeiro (Brazil). Remote Sens-Basel 12(11):1826. https://doi.org/10.3390/rs12111826CrossRef Canavesi V, Segoni S, Rosi A, Ting X, Nery T, Catani F, Casagli N (2020) Different Approaches to Use Morphometric Attributes in Landslide Susceptibility Mapping Based on Meso-Scale Spatial Units: A Case Study in Rio de Janeiro (Brazil). Remote Sens-Basel 12(11):1826. https://​doi.​org/​10.​3390/​rs12111826CrossRef
Metadaten
Titel
Improving generalization performance of landslide susceptibility model considering spatial heterogeneity by using the geomorphic label-based LightGBM
verfasst von
Deliang Sun
Xiaoqing Wu
Haijia Wen
Shuxian Shi
Qingyu Gu
Publikationsdatum
01.09.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 9/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03859-8