Skip to main content
Erschienen in: Cellulose 2/2020

09.11.2019 | Original Research

Improving mechanical properties of electrospun cellulose acetate nanofiber membranes by cellulose nanocrystals with and without polyvinylpyrrolidone

verfasst von: Lang Jiang, Ke Li, Huiyu Yang, Xin Liu, Wei Li, Weilin Xu, Bo Deng

Erschienen in: Cellulose | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Good mechanical properties of electrospun nanofiber membranes are essential for their successful application for commercial applications by providing sufficient mechanical strength to withstand severe operational conditions and guarantee structural integrity. Cellulose acetate nanofiber membranes modified with both polyvinylpyrrolidone (PVP) coated cellulose nanocrystals (CNC@PVP) and pristine CNCs were prepared using the reinforcement concentration varying from 0 to 0.135 wt%. The stability of dispersed CNCs and CNC@PVP in dimethylacetamide (DMAc) were compared visually. The apparent viscosity as a function of shear rate was compared for both CNCs and CNC@PVP in electrospun solution. Internal structure of obtained nanofiber membranes were compared using scanning electron microscopy to reveal the nanofibers diameter and its distribution. FTIR was used to disclose the different chemical structure of the two groups of membranes. Mechanical properties of nanofiber membranes were also compared. Finally, the thermogravimetric analysis was utilized to compare the thermal stability of different nanofiber membranes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bo S, Min Z, Hou Q, Rui L, Tao W, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450CrossRef Bo S, Min Z, Hou Q, Rui L, Tao W, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450CrossRef
Zurück zum Zitat Cai J, Chen J, Zhang Q, Lei M, He J, Xiao A, Ma C, Li S, Xiong H (2016) Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydr Polym 140:238–245CrossRef Cai J, Chen J, Zhang Q, Lei M, He J, Xiao A, Ma C, Li S, Xiong H (2016) Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydr Polym 140:238–245CrossRef
Zurück zum Zitat Cheng X, Mccoy J, Israelachvili J, Cohen I (2011) Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333:1276–1279CrossRef Cheng X, Mccoy J, Israelachvili J, Cohen I (2011) Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333:1276–1279CrossRef
Zurück zum Zitat Demir M, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309CrossRef Demir M, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309CrossRef
Zurück zum Zitat Eckelt J, Loske S, Goncalves M, Wolf B (2003) Formation of micro- and nano-spheric particles (filter dust) during the preparation of cellulose acetate membranes. J Membr Sci 212:69–74CrossRef Eckelt J, Loske S, Goncalves M, Wolf B (2003) Formation of micro- and nano-spheric particles (filter dust) during the preparation of cellulose acetate membranes. J Membr Sci 212:69–74CrossRef
Zurück zum Zitat Goetz L, Jalvo B, Rosal R, Mathew A (2016) Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membr Sci 510:238–248CrossRef Goetz L, Jalvo B, Rosal R, Mathew A (2016) Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membr Sci 510:238–248CrossRef
Zurück zum Zitat Gopal R, Kaur S, Chao Y, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219CrossRef Gopal R, Kaur S, Chao Y, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219CrossRef
Zurück zum Zitat Guo J, Barbari T (2010) A dual mode interpretation of the kinetics of penetrant-induced swelling and deswelling in a glassy polymer. Polymer 51:5145–5150CrossRef Guo J, Barbari T (2010) A dual mode interpretation of the kinetics of penetrant-induced swelling and deswelling in a glassy polymer. Polymer 51:5145–5150CrossRef
Zurück zum Zitat Gupta P, Elkins C, Long T, Wilkes G (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810CrossRef Gupta P, Elkins C, Long T, Wilkes G (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810CrossRef
Zurück zum Zitat Gwon J, Cho H, Chun S, Lee S, Wu Q, Meichun L, Lee S (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as base matrix. RSC Adv 6:73879–73886CrossRef Gwon J, Cho H, Chun S, Lee S, Wu Q, Meichun L, Lee S (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as base matrix. RSC Adv 6:73879–73886CrossRef
Zurück zum Zitat Habibi Y, Lucia L, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia L, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Hong D, Strawhecker K, Snyder J, Orlicki J, Reiner R, Rudie A (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRef Hong D, Strawhecker K, Snyder J, Orlicki J, Reiner R, Rudie A (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495CrossRef
Zurück zum Zitat Inukai S, Kurokawa N, Hotta A (2018) Annealing and saponification of electrospun cellulose-acetate nanofibers used as reinforcement materials for composites. Compos Part A 113:158–165CrossRef Inukai S, Kurokawa N, Hotta A (2018) Annealing and saponification of electrospun cellulose-acetate nanofibers used as reinforcement materials for composites. Compos Part A 113:158–165CrossRef
Zurück zum Zitat Jie G, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7:33486–33493CrossRef Jie G, Li J, Xu J, Xiang Z, Mo L (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7:33486–33493CrossRef
Zurück zum Zitat Kalita E, Nath B, Agan F, More V, Deb P (2015) Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes. Ind Crops Prod 65:550–555CrossRef Kalita E, Nath B, Agan F, More V, Deb P (2015) Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes. Ind Crops Prod 65:550–555CrossRef
Zurück zum Zitat Kumari A, Sarkhel G, Choudhury A (2013) Effect of polyvinylpyrrolidone on separation performance of cellulose acetate-polysulfone blend membranes. J Macromol Sci Part A Pure Appl Chem 50:692–702CrossRef Kumari A, Sarkhel G, Choudhury A (2013) Effect of polyvinylpyrrolidone on separation performance of cellulose acetate-polysulfone blend membranes. J Macromol Sci Part A Pure Appl Chem 50:692–702CrossRef
Zurück zum Zitat Lalia B, Guillen E, Arafat H, Hashaikeh R (2014) Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 332:134–141CrossRef Lalia B, Guillen E, Arafat H, Hashaikeh R (2014) Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 332:134–141CrossRef
Zurück zum Zitat Lee K, Jeong L, Kang Y, Lee S, Park W (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032CrossRef Lee K, Jeong L, Kang Y, Lee S, Park W (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032CrossRef
Zurück zum Zitat Liu H, Hsieh Y (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40:2119–2129CrossRef Liu H, Hsieh Y (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40:2119–2129CrossRef
Zurück zum Zitat Mack J, Viculis L, Ali A, Luoh R, Yang G, Hahn H, Ko F, Kaner R (2010) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80CrossRef Mack J, Viculis L, Ali A, Luoh R, Yang G, Hahn H, Ko F, Kaner R (2010) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80CrossRef
Zurück zum Zitat Maeda T, Kimura S, Kurokawa N, Hotta A (2017) Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. J Appl Polym Sci 62:45429 Maeda T, Kimura S, Kurokawa N, Hotta A (2017) Mechanical properties of poly (butylene succinate) composites with aligned cellulose-acetate nanofibers. J Appl Polym Sci 62:45429
Zurück zum Zitat Mckee M, Wilkes G, Colby R, Long T (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767CrossRef Mckee M, Wilkes G, Colby R, Long T (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767CrossRef
Zurück zum Zitat Murphy D, Depinho M (1995) An ATR-FTIR study of water in cellulose acetate membranes prepared by phase inversion. J Membr Sci 106:245–257CrossRef Murphy D, Depinho M (1995) An ATR-FTIR study of water in cellulose acetate membranes prepared by phase inversion. J Membr Sci 106:245–257CrossRef
Zurück zum Zitat Naseri N, Mathew A, Girandon L, Fröhlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534CrossRef Naseri N, Mathew A, Girandon L, Fröhlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534CrossRef
Zurück zum Zitat Oh S, Yoo D, Shin Y, Kim H, Kim H, Chung Y, Park W, Youk J (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391CrossRef Oh S, Yoo D, Shin Y, Kim H, Kim H, Chung Y, Park W, Youk J (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391CrossRef
Zurück zum Zitat Park W, Kang M, Kim H, Jin H (2010) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249–250(1):289–294CrossRef Park W, Kang M, Kim H, Jin H (2010) Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers. Macromol Symp 249–250(1):289–294CrossRef
Zurück zum Zitat Peresin M, Habibi Y, Vesterinen A, Rojas O, Pawlak J, Seppälä J (2010a) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477CrossRef Peresin M, Habibi Y, Vesterinen A, Rojas O, Pawlak J, Seppälä J (2010a) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477CrossRef
Zurück zum Zitat Peresin M, Youssef H, Arja-Helena V, Rojas O, Pawlak J, Sepp J (2010b) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477CrossRef Peresin M, Youssef H, Arja-Helena V, Rojas O, Pawlak J, Sepp J (2010b) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477CrossRef
Zurück zum Zitat Ping L, You-Lo H (2009) Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20:415604CrossRef Ping L, You-Lo H (2009) Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20:415604CrossRef
Zurück zum Zitat Sun C, Boluk Y, Ayranci C (2015) Investigation of nanofiber nonwoven meshes produced by electrospinning of cellulose nanocrystal suspensions in cellulose acetate solutions. Cellulose 22:2457–2470CrossRef Sun C, Boluk Y, Ayranci C (2015) Investigation of nanofiber nonwoven meshes produced by electrospinning of cellulose nanocrystal suspensions in cellulose acetate solutions. Cellulose 22:2457–2470CrossRef
Zurück zum Zitat Tang C, Wu M, Wu Y, Liu H (2011) Effects of fiber surface chemistry and size on the structure and properties of poly (vinyl alcohol) composite films reinforced with electrospun fibers. Compos Part A 42:1100–1109CrossRef Tang C, Wu M, Wu Y, Liu H (2011) Effects of fiber surface chemistry and size on the structure and properties of poly (vinyl alcohol) composite films reinforced with electrospun fibers. Compos Part A 42:1100–1109CrossRef
Zurück zum Zitat Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRef Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRef
Zurück zum Zitat Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19:1743–1748CrossRef Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19:1743–1748CrossRef
Zurück zum Zitat Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563–575CrossRef
Zurück zum Zitat Wang X, Drew C, Lee S, Senecal K, Kumar J, Samuelson L (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett 2:1273–1275CrossRef Wang X, Drew C, Lee S, Senecal K, Kumar J, Samuelson L (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett 2:1273–1275CrossRef
Zurück zum Zitat Wang C, Hsu CH, Lin J (2006) Scaling laws in electrospinning of polystyrene solutions. Macromolecules 39:7662–7672CrossRef Wang C, Hsu CH, Lin J (2006) Scaling laws in electrospinning of polystyrene solutions. Macromolecules 39:7662–7672CrossRef
Zurück zum Zitat Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRef Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617–2625CrossRef
Zurück zum Zitat Zoppe J, Peresin M, Habibi Y, Venditti R, Rojas O (2009) Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004CrossRef Zoppe J, Peresin M, Habibi Y, Venditti R, Rojas O (2009) Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004CrossRef
Metadaten
Titel
Improving mechanical properties of electrospun cellulose acetate nanofiber membranes by cellulose nanocrystals with and without polyvinylpyrrolidone
verfasst von
Lang Jiang
Ke Li
Huiyu Yang
Xin Liu
Wei Li
Weilin Xu
Bo Deng
Publikationsdatum
09.11.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02830-1

Weitere Artikel der Ausgabe 2/2020

Cellulose 2/2020 Zur Ausgabe