Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.11.2014 | Original Article | Ausgabe 1/2017

International Journal of Machine Learning and Cybernetics 1/2017

Improving news articles recommendations via user clustering

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 1/2017
Autoren:
Christos Bouras, Vassilis Tsogkas
Wichtige Hinweise
This manuscript is an extended version of the paper by Christos Bouras and Vassilis Tsogkas entitled: “User Personalization via W-kmeans.” Frontiers in artificial intelligence and applications, volume 243: advances in knowledge-based and intelligent information and engineering systems.

Abstract

Although commonly only item clustering is suggested by Web mining techniques for news articles recommendation systems, one of the various tasks of personalized recommendation is categorization of Web users. With the rapid explosion of online news articles, predicting user-browsing behavior using collaborative filtering (CF) techniques has gained much attention in the web personalization area. However common CF techniques suffer from problems like low accuracy and performance. This research proposes a new personalized recommendation approach that integrates both user and text clustering based on our developed algorithm, W-kmeans, with other information retrieval (IR) techniques, like text categorization and summarization in order to provide users with the articles that match their profiles. Our system can easily adapt over time to divertive user preferences. Furthermore, experimental results show that by aggregating item and user clustering with multiple IR techniques like categorization and summarization, our recommender generates results that outperform the cases where each or both of them are used, but clustering is not applied.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

International Journal of Machine Learning and Cybernetics 1/2017 Zur Ausgabe