Skip to main content
Erschienen in:

25.05.2024

Improving recommendations utilizing users’ demographic information

verfasst von: Avick Kumar Dey, Pijush Kanti Dutta Pramanik, Pradeep Kumar Singh, Prasenjit Choudhury

Erschienen in: Quality & Quantity | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The exponential increase in digital data has increased the amount of available online information. This complicates the user’s decision-making. Most online merchants and service providers utilize recommendation systems to solve this problem and meet customer needs. The traditional collaborative filtering based approach faces enormous challenges in providing potential personalized recommendation results. The demographic information of users may improve personalized recommendation results. This research proposes an improved recommendation approach based on users’ demographic information. Compared with traditional collaborative filtering-based approaches, this approach provides improved results. The experimental results show the enhanced prediction accuracy of the proposed approach and significantly lower errors when experimenting with the MovieLens dataset.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akbar, A., Agarwal, P., Obaid, A.: Recommendation engines-neural embedding to graph-based: Techniques and evaluations. Int. J. Nonlinear Anal. Appl. 13(1), 2411–2423 (2022) Akbar, A., Agarwal, P., Obaid, A.: Recommendation engines-neural embedding to graph-based: Techniques and evaluations. Int. J. Nonlinear Anal. Appl. 13(1), 2411–2423 (2022)
Zurück zum Zitat Anwar, T., Uma, V.: Comparative study of recommender system approaches and movie recommendation using collaborative filtering. Int. J. Syst. Assur. Eng. Manage., pp. 426–436, (2021) Anwar, T., Uma, V.: Comparative study of recommender system approaches and movie recommendation using collaborative filtering. Int. J. Syst. Assur. Eng. Manage., pp. 426–436, (2021)
Zurück zum Zitat Çano, E., Morisio, M.: Hybrid recommender systems: A systematic literature review. Intell. Data Anal. 21(6), 1487–1524 (2017)CrossRef Çano, E., Morisio, M.: Hybrid recommender systems: A systematic literature review. Intell. Data Anal. 21(6), 1487–1524 (2017)CrossRef
Zurück zum Zitat Chi, X., Yan, C., Wang, H., Rafique, W., Qi, L.: Amplified locality- sensitive hashing-based recommender systems with privacy protection. Concurrency Computation: Pract. Experience. 34(14), e5681 (2022)CrossRef Chi, X., Yan, C., Wang, H., Rafique, W., Qi, L.: Amplified locality- sensitive hashing-based recommender systems with privacy protection. Concurrency Computation: Pract. Experience. 34(14), e5681 (2022)CrossRef
Zurück zum Zitat Dhar, A.J., Surendra, N., Pramod, K., Singh, J.: EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems. Expert Syst. Appl. 161, 113724 (2020)CrossRef Dhar, A.J., Surendra, N., Pramod, K., Singh, J.: EMUCF: Enhanced multistage user-based collaborative filtering through non-linear similarity for recommendation systems. Expert Syst. Appl. 161, 113724 (2020)CrossRef
Zurück zum Zitat Gupta, M., Thakkar, A., Aashish, V., Gupta, Rathore, D.P.S.: Movie recommender system using collaborative filtering, in International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, (2020) Gupta, M., Thakkar, A., Aashish, V., Gupta, Rathore, D.P.S.: Movie recommender system using collaborative filtering, in International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, (2020)
Zurück zum Zitat He, X.L., Lizi, Z., Hanwang, N., Liqiang, H., Xia, C., Tat-Seng: Neural Collaborative Filtering, in Proceedings of the 26th International Conference on World Wide Web, (2017) He, X.L., Lizi, Z., Hanwang, N., Liqiang, H., Xia, C., Tat-Seng: Neural Collaborative Filtering, in Proceedings of the 26th International Conference on World Wide Web, (2017)
Zurück zum Zitat Hietala, J.: Matrix Factorization Algorithms for Personalized Product Recommendation: A case Study. LUT University (2021) Hietala, J.: Matrix Factorization Algorithms for Personalized Product Recommendation: A case Study. LUT University (2021)
Zurück zum Zitat Huming, G., Weili, L.: A hotel recommendation system based on collaborative filtering and rankboost algorithm., in Second International Conference on Multimedia and Information Technology, Kaifeng, China, (2010) Huming, G., Weili, L.: A hotel recommendation system based on collaborative filtering and rankboost algorithm., in Second International Conference on Multimedia and Information Technology, Kaifeng, China, (2010)
Zurück zum Zitat Kaur, G., Ratnoo, S.: Adaptive genetic algorithm for feature weighting in multi-criteria recommender systems. Pertanika J. Sci. Technol. 27(1), 123–141 (2019) Kaur, G., Ratnoo, S.: Adaptive genetic algorithm for feature weighting in multi-criteria recommender systems. Pertanika J. Sci. Technol. 27(1), 123–141 (2019)
Zurück zum Zitat Krishnan, R., Nair, P.R.: RFM-Based Customer Analysis and Product Recommendation System, in International Conference on Advanced Computing and Intelligent Technologies (ICACIT 2021), (2022) Krishnan, R., Nair, P.R.: RFM-Based Customer Analysis and Product Recommendation System, in International Conference on Advanced Computing and Intelligent Technologies (ICACIT 2021), (2022)
Zurück zum Zitat Lian, S., Tang, M.: API recommendation for Mashup creation based on neural graph collaborative filtering. Connection Sci. 34(1), 124–138 (2022)CrossRef Lian, S., Tang, M.: API recommendation for Mashup creation based on neural graph collaborative filtering. Connection Sci. 34(1), 124–138 (2022)CrossRef
Zurück zum Zitat Liao, M., Sundar, S.S.: When E-Commerce personalization systems Show and tell: Investigating the relative persuasive appeal of content-based versus collaborative filtering. J. Advertising. 51(2), 256–267 (2022)CrossRef Liao, M., Sundar, S.S.: When E-Commerce personalization systems Show and tell: Investigating the relative persuasive appeal of content-based versus collaborative filtering. J. Advertising. 51(2), 256–267 (2022)CrossRef
Zurück zum Zitat Mishra, R., Rathi, S.: Efficient and scalable job recommender system using collaborative filtering, in 1st International Conference on Data Science, Machine Learning and Applications, Singapore, (2020) Mishra, R., Rathi, S.: Efficient and scalable job recommender system using collaborative filtering, in 1st International Conference on Data Science, Machine Learning and Applications, Singapore, (2020)
Zurück zum Zitat Pal, S., Pramanik, P.K.D., Nayyar, A., Choudhury, P.: A Personalised Recommendation Framework for Ubiquitous Learning System, in 6th International Conference on Intelligent Information Technology (ICIIT ‘21), Ho Chi Minh, Viet Nam, (2021) Pal, S., Pramanik, P.K.D., Nayyar, A., Choudhury, P.: A Personalised Recommendation Framework for Ubiquitous Learning System, in 6th International Conference on Intelligent Information Technology (ICIIT ‘21), Ho Chi Minh, Viet Nam, (2021)
Zurück zum Zitat Sadia, A., Yaser, H., Mamoona, H., Nor, S., Mohd, J., Muhammad, A., Asif, N.: Enabling recommendation system architecture in virtualized environment for e-learning. Egypt. Inf. J. 23(1), 33–45 (2022) Sadia, A., Yaser, H., Mamoona, H., Nor, S., Mohd, J., Muhammad, A., Asif, N.: Enabling recommendation system architecture in virtualized environment for e-learning. Egypt. Inf. J. 23(1), 33–45 (2022)
Zurück zum Zitat Sahoo, A.K., Pradhan, C., Barik, R.K., Dubey, H.: DeepReco: Deep Learning Based Health Recommender System Using Collaborative Filtering, Computation, p. 2, (2019) Sahoo, A.K., Pradhan, C., Barik, R.K., Dubey, H.: DeepReco: Deep Learning Based Health Recommender System Using Collaborative Filtering, Computation, p. 2, (2019)
Zurück zum Zitat Sallam, R.M., Hussein, M., Mousa, H.M.: An enhanced collaborative filtering-based approach for recommender systems. Int. J. Comput. Appl. 176(41), 9–15 (2020) Sallam, R.M., Hussein, M., Mousa, H.M.: An enhanced collaborative filtering-based approach for recommender systems. Int. J. Comput. Appl. 176(41), 9–15 (2020)
Zurück zum Zitat Sang, A., Vishwakarma, S.K.: Design and implementation of collaborative filtering approach for movie recommendation system. Int. J. Comput. Appl., pp. 18–24, (2017) Sang, A., Vishwakarma, S.K.: Design and implementation of collaborative filtering approach for movie recommendation system. Int. J. Comput. Appl., pp. 18–24, (2017)
Zurück zum Zitat Selvi, C., Sivasankar, E.: A novel similarity measure towards effective recommendation using Matusita coefficient for Collaborative Filtering in a sparse dataset, Sādhanā, vol. 43 (Article number: 202), (2018) Selvi, C., Sivasankar, E.: A novel similarity measure towards effective recommendation using Matusita coefficient for Collaborative Filtering in a sparse dataset, Sādhanā, vol. 43 (Article number: 202), (2018)
Zurück zum Zitat Seth, R., Sharaff, A.: A comparative overview of hybrid recom- mender systems: Review, challenges, and prospects. In: Raja, R., Nagwanshi, K.K., Kumar, S., Laxmi, K.R. (eds.) Data Mining and Machine Learning Applications, pp. 57–98. Scrivener Publishing (2022) Seth, R., Sharaff, A.: A comparative overview of hybrid recom- mender systems: Review, challenges, and prospects. In: Raja, R., Nagwanshi, K.K., Kumar, S., Laxmi, K.R. (eds.) Data Mining and Machine Learning Applications, pp. 57–98. Scrivener Publishing (2022)
Zurück zum Zitat Shao, T., Yang, X., Wang, F., Yan, C., Luhach, A.: Trusted service evaluation for Mobile Edge users: Challenges and reviews. Complexity, (2021) Shao, T., Yang, X., Wang, F., Yan, C., Luhach, A.: Trusted service evaluation for Mobile Edge users: Challenges and reviews. Complexity, (2021)
Zurück zum Zitat Sharma, R., Rani, S., Tanwar, S.: Machine learning algorithms for building recommender systems, in International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, (2020) Sharma, R., Rani, S., Tanwar, S.: Machine learning algorithms for building recommender systems, in International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, (2020)
Zurück zum Zitat Singh, P.K., Pramanik, P.K.D., Choudhury, P.: Collaborative filtering in Recommender systems: Technicalities, challenges, applications and Research Trends. In: Shrivastava, G., Peng, S.L., Bansal, H., Sharma, K., Sharma, M. (eds.) New Age Analytics: Transforming Internet. Apple Academic (2019a) Singh, P.K., Pramanik, P.K.D., Choudhury, P.: Collaborative filtering in Recommender systems: Technicalities, challenges, applications and Research Trends. In: Shrivastava, G., Peng, S.L., Bansal, H., Sharma, K., Sharma, M. (eds.) New Age Analytics: Transforming Internet. Apple Academic (2019a)
Zurück zum Zitat Singh, P.K., Pramanik, P.K.D., Choudhury, P.: An Improved Similarity Calculation Method for Collaborative Filtering-based recommendation, considering Neighbor’s liking and disliking of categorical attributes of items. J. Inform. Optim. Sci. 40(2), 397–412 (2019b) Singh, P.K., Pramanik, P.K.D., Choudhury, P.: An Improved Similarity Calculation Method for Collaborative Filtering-based recommendation, considering Neighbor’s liking and disliking of categorical attributes of items. J. Inform. Optim. Sci. 40(2), 397–412 (2019b)
Zurück zum Zitat Singh, P., Pramanik, P.K.D., Debnath, N., Choudhury, P.: A novel neighborhood calculation method by assessing users’ varying preferences in collaborative Filtering, in Proc. of 34th International Conference on Computers and Their Applications, Honolulu, Hawaii, USA, (2019c) Singh, P., Pramanik, P.K.D., Debnath, N., Choudhury, P.: A novel neighborhood calculation method by assessing users’ varying preferences in collaborative Filtering, in Proc. of 34th International Conference on Computers and Their Applications, Honolulu, Hawaii, USA, (2019c)
Zurück zum Zitat Singh, P.K., Pramanik, P.K.D., Debnath, N.C., Choudhury, P.: A Novel Neighborhood Calculation Method by Assessing Users’ Varying Preferences in Collaborative Filtering, in Proceedings of the ISCA 34th International Conference on Computers and Their Applications (CATA 2019d). EPiC Series in Computing, vol. 58, pp. 345–355. (2019) Singh, P.K., Pramanik, P.K.D., Debnath, N.C., Choudhury, P.: A Novel Neighborhood Calculation Method by Assessing Users’ Varying Preferences in Collaborative Filtering, in Proceedings of the ISCA 34th International Conference on Computers and Their Applications (CATA 2019d). EPiC Series in Computing, vol. 58, pp. 345–355. (2019)
Zurück zum Zitat Singh, P., Pramanik, P.K.D., Choudhury, P.: Collaborative filtering in recommender systems: Technicalities, challenges, applications and research trends. In: New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, p. 183. Apple Academic (2020a) Singh, P., Pramanik, P.K.D., Choudhury, P.: Collaborative filtering in recommender systems: Technicalities, challenges, applications and research trends. In: New Age Analytics: Transforming the Internet through Machine Learning, IoT, and Trust Modeling, p. 183. Apple Academic (2020a)
Zurück zum Zitat Singh, P.K., Setta, S., Pramanik, P.K.D., Choudhury, P.: Improving the Accuracy of Collaborative Filtering Based Recommendations by Considering the Temporal Variance of Top-N Neighbors, in Proceedings of the International Conference on Innovative Computing and Communication (ICICC-2019). Advances in Intelligent Systems and Computing, vol. 1087, Springer, Singapore, pp. 1–10. (2020b) Singh, P.K., Setta, S., Pramanik, P.K.D., Choudhury, P.: Improving the Accuracy of Collaborative Filtering Based Recommendations by Considering the Temporal Variance of Top-N Neighbors, in Proceedings of the International Conference on Innovative Computing and Communication (ICICC-2019). Advances in Intelligent Systems and Computing, vol. 1087, Springer, Singapore, pp. 1–10. (2020b)
Zurück zum Zitat Suresh, A., Carmel, M., Belinda, M.: A comprehensive study of hybrid recommendation systems for e-commerce applications. Int. J. Adv. Sci. Technol. 29(3), 4089–4101 (2020) Suresh, A., Carmel, M., Belinda, M.: A comprehensive study of hybrid recommendation systems for e-commerce applications. Int. J. Adv. Sci. Technol. 29(3), 4089–4101 (2020)
Zurück zum Zitat Wang, Q., Yin, H., Chen, T., Yu, J., Zhou, A., Zhang, X.: Fast- adapting and privacy-preserving federated recommender system. VLDB J., pp. 877–896, (2021) Wang, Q., Yin, H., Chen, T., Yu, J., Zhou, A., Zhang, X.: Fast- adapting and privacy-preserving federated recommender system. VLDB J., pp. 877–896, (2021)
Zurück zum Zitat Yang, F.: A hybrid recommendation algorithm–based intelligent business recommendation system. J. Discrete Math. Sci. Crypt., pp. 1317–1322, (2018) Yang, F.: A hybrid recommendation algorithm–based intelligent business recommendation system. J. Discrete Math. Sci. Crypt., pp. 1317–1322, (2018)
Zurück zum Zitat Yue, W., Wang, Z., Liu, W., Tian, B., Lauria, S., Liu, X.: An optimally weighted user-and item-based collaborative filtering approach to predicting baseline data for Friedreich’s Ataxia patients, Neurocomputing, vol. 419, pp. 287–294, (2021) Yue, W., Wang, Z., Liu, W., Tian, B., Lauria, S., Liu, X.: An optimally weighted user-and item-based collaborative filtering approach to predicting baseline data for Friedreich’s Ataxia patients, Neurocomputing, vol. 419, pp. 287–294, (2021)
Metadaten
Titel
Improving recommendations utilizing users’ demographic information
verfasst von
Avick Kumar Dey
Pijush Kanti Dutta Pramanik
Pradeep Kumar Singh
Prasenjit Choudhury
Publikationsdatum
25.05.2024
Verlag
Springer Netherlands
Erschienen in
Quality & Quantity / Ausgabe 6/2024
Print ISSN: 0033-5177
Elektronische ISSN: 1573-7845
DOI
https://doi.org/10.1007/s11135-024-01890-1