Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

22.11.2020 | Regular Paper | Ausgabe 3/2021

Knowledge and Information Systems 3/2021

Improving spectral clustering with deep embedding, cluster estimation and metric learning

Zeitschrift:
Knowledge and Information Systems > Ausgabe 3/2021
Autoren:
Liang Duan, Shuai Ma, Charu Aggarwal, Saket Sathe
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Spectral clustering is one of the most popular modern clustering algorithms. It is easy to implement, can be solved efficiently, and very often outperforms other traditional clustering algorithms such as k-means. However, spectral clustering could be insufficient when dealing with most datasets having complex statistical properties, and it requires users to specify the number k of clusters and a good distance metric to construct the similarity graph. To address these problems, in this article, we propose an approach to extending spectral clustering with deep embedding, cluster estimation, and metric learning. First, we generate the deep embedding via learning a deep autoencoder, which transforms the raw data into their lower dimensional representations suitable for clustering. Second, we provide an effective method to estimate the number of clusters by learning a softmax autoencoder from the deep embedding. Third, we construct a more powerful similarity graph by learning a distance metric from the embedding using a Siamese network. Finally, we conduct an extensive experimental study on image and text datasets, which verifies the effectiveness and efficiency of our approach.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2021

Knowledge and Information Systems 3/2021 Zur Ausgabe

Premium Partner