Skip to main content
Erschienen in:

16.02.2022

Improving the Accuracy of Traffic Accident Prediction Models on Expressways by Considering Additional Information

verfasst von: Yuki Wakatsuki, Jumpei Tatebe, Jian Xing

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study aims to improve the accuracy of a convolutional neural network (CNN) based model. That predicts the likelihood of accidents on a specific road section from the present to 2 h in the future using a wide range of temporal and spatial sensor information developed in previous studies as input to reduce accidents. In addition to previous studies that only used traffic data (i.e., speed, traffic volume, time occupancy, etc.), we considered time data (i.e., day of the week, time of day, etc.) and weather data as additional explanatory variables. Then, using the chi-square test, we selected the information that contributed to improving the accuracy of accident occurrence prediction and added it as input to the CNN-based model. Compared with the base model, the average F1-score of the proposed model was improved by 19.1%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat World Health Organization: “The global burden of road traffic deaths”, Global status report on road safety 2018, pp. 2–13. Geneva (2018) World Health Organization: “The global burden of road traffic deaths”, Global status report on road safety 2018, pp. 2–13. Geneva (2018)
3.
Zurück zum Zitat Wang, G., Kim, J.: A large scale neural network model for crash prediction in urban road networks. In Proceedings of Australasian Transport Research Forum 2017, Auckland, New Zealand, 27–29 Nov 2017 Wang, G., Kim, J.: A large scale neural network model for crash prediction in urban road networks. In Proceedings of Australasian Transport Research Forum 2017, Auckland, New Zealand, 27–29 Nov 2017
4.
Zurück zum Zitat Ozbayoglu, M., Kucukayan, G., Dogdu, E.: A real-time autonomous highway accident detection model based on big data processing and computational intelligence. In Proceedings of 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, 5–8 Dec 2016. https://doi.org/10.1109/BigData.2016.7840798 Ozbayoglu, M., Kucukayan, G., Dogdu, E.: A real-time autonomous highway accident detection model based on big data processing and computational intelligence. In Proceedings of 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, 5–8 Dec 2016. https://​doi.​org/​10.​1109/​BigData.​2016.​7840798
5.
Zurück zum Zitat Ren, H., Song, Y., Wang, J., Hu, Y., Lei, J.: A deep learning approach to the citywide traffic accident risk prediction. In Proceedings of 2018 IEEE International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 4–7 Nov 2018. https://doi.org/10.1109/ITSC.2018.8569437 Ren, H., Song, Y., Wang, J., Hu, Y., Lei, J.: A deep learning approach to the citywide traffic accident risk prediction. In Proceedings of 2018 IEEE International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 4–7 Nov 2018. https://​doi.​org/​10.​1109/​ITSC.​2018.​8569437
9.
Zurück zum Zitat Yuan, Z., Zhou, X., Yang, T.: Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal Data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 19-23 Aug 2018. https://doi.org/10.1145/3219819.3219922 Yuan, Z., Zhou, X., Yang, T.: Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal Data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 19-23 Aug 2018. https://​doi.​org/​10.​1145/​3219819.​3219922
13.
Zurück zum Zitat Rayson, P., Berridge, D., Francis, B.J.: Extending the cochran rule for the comparison of word frequencies between corpora. In Proceedings of the 7th International Conference on Statistical analysis of textual data (JADT). 4, 1–12 (2004) Rayson, P., Berridge, D., Francis, B.J.: Extending the cochran rule for the comparison of word frequencies between corpora. In Proceedings of the 7th International Conference on Statistical analysis of textual data (JADT). 4, 1–12 (2004)
14.
Zurück zum Zitat Kleinbaum, D.G., Klein, M.: Introduction to Survival Analysis, pp. 1–54. Survival Analysis A Self-Learning Text Third Edition, New York, Springer (2011) Kleinbaum, D.G., Klein, M.: Introduction to Survival Analysis, pp. 1–54. Survival Analysis A Self-Learning Text Third Edition, New York, Springer (2011)
16.
Zurück zum Zitat Berman, E., Wang, X.: Hypothesis Testing with Chi-Square. Essential Statistics for Public Managers and Policy Analysts 4th Edition, pp. 178–201. SAGE Publications, Inc., Thousand Oaks, California (2016) Berman, E., Wang, X.: Hypothesis Testing with Chi-Square. Essential Statistics for Public Managers and Policy Analysts 4th Edition, pp. 178–201. SAGE Publications, Inc., Thousand Oaks, California (2016)
Metadaten
Titel
Improving the Accuracy of Traffic Accident Prediction Models on Expressways by Considering Additional Information
verfasst von
Yuki Wakatsuki
Jumpei Tatebe
Jian Xing
Publikationsdatum
16.02.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-021-00293-y

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.