Skip to main content

2025 | OriginalPaper | Buchkapitel

Improving the Bees Algorithm Using Gradual Search Space Reduction

verfasst von : Turki Albakr, D. T. Pham

Erschienen in: Intelligent Engineering Optimisation with the Bees Algorithm

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Bees Algorithm is a well-known metaheuristic optimisation method that has been applied in many disciplines with noticeable success. For example, it has been applied to machine scheduling, training artificial neural networks (ANNs) for pattern recognition, and the design of mechanical structures. There have been many attempts to improve the Bees Algorithm’s performance to tackle some of its weaknesses with more focus on the local search stage. This research attempts to improve the Bees Algorithm with more attention directed to stages other than the local search. The suggested method employs an adapted notion of the regional elimination method to achieve the abandonment and reduction of the search space within the Bees Algorithm. To assess the performance, the proposed method was tested on 24 benchmark functions, and it was applied to two engineering problems. The results obtained indicate a statistically significant improvement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295 Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295
2.
Zurück zum Zitat Beheshti Z, Shamsuddin SMH (2013) A review of population-based meta-heuristic algorithms. Int J Adv Soft Comput Appl 5(1):1–35 Beheshti Z, Shamsuddin SMH (2013) A review of population-based meta-heuristic algorithms. Int J Adv Soft Comput Appl 5(1):1–35
3.
Zurück zum Zitat Kamsani SH (2016) Improvements on the Bees algorithm for continuous optimisation problems (Doctoral dissertation). PhD thesis. University of Birmingham Kamsani SH (2016) Improvements on the Bees algorithm for continuous optimisation problems (Doctoral dissertation). PhD thesis. University of Birmingham
4.
Zurück zum Zitat Pham DT, Darwish HA (2010) Using the Bees algorithm with Kalman filtering to train an artificial neural network for pattern classification. Proc Inst Mech Engineers J Syst Control Eng, pp 885–892 Pham DT, Darwish HA (2010) Using the Bees algorithm with Kalman filtering to train an artificial neural network for pattern classification. Proc Inst Mech Engineers J Syst Control Eng, pp 885–892
5.
Zurück zum Zitat Alfi A, Khosravi A (2012) Constrained nonlinear optimal control via a hybrid BA-SD. Int J Eng-Trans C: Asp 25(3):197–204 Alfi A, Khosravi A (2012) Constrained nonlinear optimal control via a hybrid BA-SD. Int J Eng-Trans C: Asp 25(3):197–204
6.
Zurück zum Zitat Yuce B, Pham DT, Packianather MS, Mastrocinque E (2015) An enhancement to the Bees algorithm with slope angle computation and Hill Climbing algorithm and its applications on scheduling and continuous type optimisation problem. Prod Manuf Res 3(1):3–19 Yuce B, Pham DT, Packianather MS, Mastrocinque E (2015) An enhancement to the Bees algorithm with slope angle computation and Hill Climbing algorithm and its applications on scheduling and continuous type optimisation problem. Prod Manuf Res 3(1):3–19
7.
Zurück zum Zitat Pham DT, Castellani M, Fahmy A (2008) Learning the inverse kinematics of a robot manipulator using the Bees algorithm. In: 2008 6th IEEE international conference on industrial informatics. IEEE, pp 493–498 Pham DT, Castellani M, Fahmy A (2008) Learning the inverse kinematics of a robot manipulator using the Bees algorithm. In: 2008 6th IEEE international conference on industrial informatics. IEEE, pp 493–498
8.
Zurück zum Zitat Pham DT, Pham QT, Ghanbarzadeh A, Castellani M (2008) Dynamic optimisation of chemical engineering processes using the bees algorithm. IFAC Proc 4(2):6100–6105 Pham DT, Pham QT, Ghanbarzadeh A, Castellani M (2008) Dynamic optimisation of chemical engineering processes using the bees algorithm. IFAC Proc 4(2):6100–6105
9.
Zurück zum Zitat Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees algorithm technical note. Tech. rep. Manufacturing Engineering Centre, Cardiff University, UK Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The Bees algorithm technical note. Tech. rep. Manufacturing Engineering Centre, Cardiff University, UK
11.
Zurück zum Zitat Deb K (2012) Optimization for engineering design: algorithms and examples. New Delhi, India: PHI Learning Pvt. Ltd Deb K (2012) Optimization for engineering design: algorithms and examples. New Delhi, India: PHI Learning Pvt. Ltd
12.
Zurück zum Zitat Jamil M, Yang X (2013) A literature survey of benchmark functions for global optimisation problems. J Numer Optim 2:150–194 Jamil M, Yang X (2013) A literature survey of benchmark functions for global optimisation problems. J Numer Optim 2:150–194
13.
Zurück zum Zitat Karaboga D, Gorkemli B (2012) A quick artificial bee colony-qABC-algorithm for optimization problems. In: 2012 International symposium on innovations in intelligent systems and applications. Trabzon, Turkey, pp 1–5 Karaboga D, Gorkemli B (2012) A quick artificial bee colony-qABC-algorithm for optimization problems. In: 2012 International symposium on innovations in intelligent systems and applications. Trabzon, Turkey, pp 1–5
14.
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. In: 1st International conference on natural computation, ICNC 2005, Changsha, China. Springer, Berlin, Germany, pp 582–591 Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. In: 1st International conference on natural computation, ICNC 2005, Changsha, China. Springer, Berlin, Germany, pp 582–591
15.
Zurück zum Zitat Kannan BK, Kramer SN (1994) Augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des, Trans ASME 116(2):405–411 Kannan BK, Kramer SN (1994) Augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des, Trans ASME 116(2):405–411
16.
Zurück zum Zitat Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014 Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014
17.
Zurück zum Zitat Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35 Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35
18.
Zurück zum Zitat Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305MathSciNet Garg H (2016) A hybrid PSO-GA algorithm for constrained optimization problems. Appl Math Comput 274:292–305MathSciNet
19.
Zurück zum Zitat Guo CX, Hu JS, Ye B, Cao YJ (2004) Swarm intelligence for mixed-variable design optimization. J Zhejiang University SCIENCE A 5(7):851–860 Guo CX, Hu JS, Ye B, Cao YJ (2004) Swarm intelligence for mixed-variable design optimization. J Zhejiang University SCIENCE A 5(7):851–860
20.
Zurück zum Zitat Mezura-Montes E, Coello CA (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: MICAI 2005: Advances in Artificial Intelligence. Springer, Berlin, Germany, pp 652–662 Mezura-Montes E, Coello CA (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: MICAI 2005: Advances in Artificial Intelligence. Springer, Berlin, Germany, pp 652–662
21.
Zurück zum Zitat He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36(5):585–605 He S, Prempain E, Wu QH (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36(5):585–605
22.
Zurück zum Zitat Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396 Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396
Metadaten
Titel
Improving the Bees Algorithm Using Gradual Search Space Reduction
verfasst von
Turki Albakr
D. T. Pham
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-64936-3_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.