Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2018

22.01.2018

Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524-T3 Alloy with Amorphous Electroless Ni-P Coating

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surface microhardness, as well as the fatigue crack propagation (FCP) resistance of 2524-T3 alloy, is improved by producing a 20-μm-thick amorphous electroless Ni-12% P coating on its surface. Compared to the substrate, this deposited EN coating possesses higher strength properties and exhibits a greater ability of accommodating the plastic deformation at the fatigue crack tip, thereby remarkably improving the FCP resistance in near-threshold and early Paris regimes. Regardless of the similar FCP rates in Paris regime (ΔK ≥ 16.2 MPa m0.5), the coated sample exhibits extended Paris regime and enhanced damage tolerance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799CrossRef J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799CrossRef
2.
Zurück zum Zitat Y. Xue, H.E. Kadiri, M.F. Horstemeyer, J.B. Jordon, and H. Weiland, Micromechanisms of Multistage Fatigue Crack Growth in a High-Strength Aluminum Alloy, Acta Mater., 2007, 55, p 1975–1984CrossRef Y. Xue, H.E. Kadiri, M.F. Horstemeyer, J.B. Jordon, and H. Weiland, Micromechanisms of Multistage Fatigue Crack Growth in a High-Strength Aluminum Alloy, Acta Mater., 2007, 55, p 1975–1984CrossRef
3.
Zurück zum Zitat Z.Q. Zheng, B. Cai, T. Zhai, and S.C. Li, The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy, Mater. Sci. Eng., A, 2011, 528, p 2017–2022CrossRef Z.Q. Zheng, B. Cai, T. Zhai, and S.C. Li, The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy, Mater. Sci. Eng., A, 2011, 528, p 2017–2022CrossRef
4.
Zurück zum Zitat A.K. Vasudevan, K. Sadananda, and K. Rajan, Role of Microstructures on the Growth of Long Fatigue Cracks, Int. J. Fatigue, 1997, 19, p 151–159CrossRef A.K. Vasudevan, K. Sadananda, and K. Rajan, Role of Microstructures on the Growth of Long Fatigue Cracks, Int. J. Fatigue, 1997, 19, p 151–159CrossRef
5.
Zurück zum Zitat N. Kamp, N. Gao, M.J. Starink, and I. Sinclair, Influence of Grain Structure and Slip Planarity on Fatigue Crack Growth in Low Alloying Artificially Aged 2xxx Aluminium Alloys, Int. J. Fatigue, 2007, 29, p 869–878CrossRef N. Kamp, N. Gao, M.J. Starink, and I. Sinclair, Influence of Grain Structure and Slip Planarity on Fatigue Crack Growth in Low Alloying Artificially Aged 2xxx Aluminium Alloys, Int. J. Fatigue, 2007, 29, p 869–878CrossRef
6.
Zurück zum Zitat Y.Q. Chen, S.P. Pan, M.Z. Zhou, and D.Q. Yi, Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and Propagation Behavior of 2524-T3 Al Alloy, Mater. Sci. Eng., A, 2013, 580, p 150–158CrossRef Y.Q. Chen, S.P. Pan, M.Z. Zhou, and D.Q. Yi, Effects of Inclusions, Grain Boundaries and Grain Orientations on the Fatigue Crack Initiation and Propagation Behavior of 2524-T3 Al Alloy, Mater. Sci. Eng., A, 2013, 580, p 150–158CrossRef
7.
Zurück zum Zitat Z. Liu, F. Li, P. Xia, S. Bai, Y. Gu, D. Yu, and S. Zeng, Mechanisms for Goss-Grains Induced Crack Deflection and Enhanced Fatigue Crack Propagation Resistance in Fatigue Stage II, of an AA2524 Alloy, Mater. Sci. Eng., A, 2015, 625, p 271–277CrossRef Z. Liu, F. Li, P. Xia, S. Bai, Y. Gu, D. Yu, and S. Zeng, Mechanisms for Goss-Grains Induced Crack Deflection and Enhanced Fatigue Crack Propagation Resistance in Fatigue Stage II, of an AA2524 Alloy, Mater. Sci. Eng., A, 2015, 625, p 271–277CrossRef
8.
Zurück zum Zitat T. Zhai, A.J. Wilkinson, and J.W. Martin, A Crystallographic Mechanism for Fatigue Crack Propagation Through Grain Boundaries, Acta Mater., 2000, 48, p 4917–4927CrossRef T. Zhai, A.J. Wilkinson, and J.W. Martin, A Crystallographic Mechanism for Fatigue Crack Propagation Through Grain Boundaries, Acta Mater., 2000, 48, p 4917–4927CrossRef
9.
Zurück zum Zitat D.L. Chen, M.C. Chaturvedi, N. Goel, and N.L. Richards, Fatigue Crack Growth Behavior of X2095 Al-Li Alloy, Int. J. Fatigue, 1999, 21, p 1079–1086CrossRef D.L. Chen, M.C. Chaturvedi, N. Goel, and N.L. Richards, Fatigue Crack Growth Behavior of X2095 Al-Li Alloy, Int. J. Fatigue, 1999, 21, p 1079–1086CrossRef
10.
Zurück zum Zitat C. Watanabe, R. Monzen, and K. Tazaki, Effects of Al3Sc Particle Size and Precipitate-Free Zones on Fatigue Behavior and Dislocation Structure of an Aged Al-Mg-Sc Alloy, Int. J. Fatigue, 2008, 30, p 635–641CrossRef C. Watanabe, R. Monzen, and K. Tazaki, Effects of Al3Sc Particle Size and Precipitate-Free Zones on Fatigue Behavior and Dislocation Structure of an Aged Al-Mg-Sc Alloy, Int. J. Fatigue, 2008, 30, p 635–641CrossRef
11.
Zurück zum Zitat X. Chen, Z. Liu, M. Lin, A. Ning, and S. Zeng, Enhanced Fatigue Crack Propagation Resistance in an Al-Zn-Mg-Cu Alloy by Retrogression and Reaging Treatment, J. Mater. Sci. Lett., 2012, 21, p 2345–2353 X. Chen, Z. Liu, M. Lin, A. Ning, and S. Zeng, Enhanced Fatigue Crack Propagation Resistance in an Al-Zn-Mg-Cu Alloy by Retrogression and Reaging Treatment, J. Mater. Sci. Lett., 2012, 21, p 2345–2353
12.
Zurück zum Zitat S. Bai, Z. Liu, Y. Gu, X. Zhou, and S. Zeng, Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with a Low Cu/Mg Ratio, Mater. Sci. Eng., A, 2011, 530, p 473–480CrossRef S. Bai, Z. Liu, Y. Gu, X. Zhou, and S. Zeng, Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with a Low Cu/Mg Ratio, Mater. Sci. Eng., A, 2011, 530, p 473–480CrossRef
13.
Zurück zum Zitat S. Bai, Z. Liu, Y. Li, Y. Hou, and X. Chen, Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with Addition of Rare Earth Er, Mater. Sci. Eng., A, 2010, 527, p 1806–1814CrossRef S. Bai, Z. Liu, Y. Li, Y. Hou, and X. Chen, Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with Addition of Rare Earth Er, Mater. Sci. Eng., A, 2010, 527, p 1806–1814CrossRef
14.
Zurück zum Zitat T.S. Srivatsan, D. Kolar, and P. Magnusen, The Cyclic Fatigue and Final Fracture Behavior of Aluminum Alloy 2524, Mater. Des., 2002, 23, p 129–139CrossRef T.S. Srivatsan, D. Kolar, and P. Magnusen, The Cyclic Fatigue and Final Fracture Behavior of Aluminum Alloy 2524, Mater. Des., 2002, 23, p 129–139CrossRef
15.
Zurück zum Zitat A.T. Kermanidis, A.D. Zervaki, and G.N. Haidemenopoulos, Effects of Temper Condition and Corrosion on the Fatigue Performance of a Laser-Welded Al-Cu-Mg-Ag (2139) Alloy, Mater. Des., 2010, 31, p 42–49CrossRef A.T. Kermanidis, A.D. Zervaki, and G.N. Haidemenopoulos, Effects of Temper Condition and Corrosion on the Fatigue Performance of a Laser-Welded Al-Cu-Mg-Ag (2139) Alloy, Mater. Des., 2010, 31, p 42–49CrossRef
16.
Zurück zum Zitat E.S. Puchi-Cabrera, C. Villalobos-Gutiérrez, and I. Irausquín, Fatigue Behavior of a 7075-T6 Aluminum Alloy Coated with an Electroless Ni-P Deposit, Int. J. Fatigue, 2006, 28, p 1854–1866CrossRef E.S. Puchi-Cabrera, C. Villalobos-Gutiérrez, and I. Irausquín, Fatigue Behavior of a 7075-T6 Aluminum Alloy Coated with an Electroless Ni-P Deposit, Int. J. Fatigue, 2006, 28, p 1854–1866CrossRef
17.
Zurück zum Zitat E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, and L. Gil, Fatigue Behavior of AA7075-T6 Aluminum Alloy Coated with ZrN by PVD, Int. J. Fatigue, 2008, 30, p 1220–1230CrossRef E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, and L. Gil, Fatigue Behavior of AA7075-T6 Aluminum Alloy Coated with ZrN by PVD, Int. J. Fatigue, 2008, 30, p 1220–1230CrossRef
18.
Zurück zum Zitat P.J.E. Forsyth, in Proceedings of Crack Propagation Symposium, The College of Aeronautics, vol. 1 (Cranfield, 1961), p. 76–94 P.J.E. Forsyth, in Proceedings of Crack Propagation Symposium, The College of Aeronautics, vol. 1 (Cranfield, 1961), p. 76–94
19.
Zurück zum Zitat S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 2003 S. Suresh, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, 2003
20.
Zurück zum Zitat D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan, Microstructure Based Fatigue Modeling of Cast A356-T6 Alloy, Eng. Fract. Mech., 2003, 70, p 49–80CrossRef D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan, Microstructure Based Fatigue Modeling of Cast A356-T6 Alloy, Eng. Fract. Mech., 2003, 70, p 49–80CrossRef
21.
Zurück zum Zitat Y. Liu, Z. Liu, Y. Li, Q. Xia, and J. Zhou, Enhanced Fatigue Crack Propagation Resistance of an Al-Cu-Mg Alloy by Artificial Aging, Mater. Sci. Eng., A, 2008, 492, p 333–336CrossRef Y. Liu, Z. Liu, Y. Li, Q. Xia, and J. Zhou, Enhanced Fatigue Crack Propagation Resistance of an Al-Cu-Mg Alloy by Artificial Aging, Mater. Sci. Eng., A, 2008, 492, p 333–336CrossRef
22.
Zurück zum Zitat F. Li, Z. Liu, W. Wu, P. Xia, P. Ying, Q. Zhao, J. Li, S. Bai, and C. Ye, On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy, Mater. Sci. Eng., A, 2016, 669, p 367–378CrossRef F. Li, Z. Liu, W. Wu, P. Xia, P. Ying, Q. Zhao, J. Li, S. Bai, and C. Ye, On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy, Mater. Sci. Eng., A, 2016, 669, p 367–378CrossRef
23.
Zurück zum Zitat F. Li, Z. Liu, W. Wu, P. Xia, P. Ying, Y. Zhou, W. Liu, L. Lu, and A. Wang, Enhanced Fatigue Crack Propagation Resistance of Al-Cu-Mg Alloy by Intensifying Goss Texture and Refining Goss Grains, Mater. Sci. Eng., A, 2017, 679, p 204–214CrossRef F. Li, Z. Liu, W. Wu, P. Xia, P. Ying, Y. Zhou, W. Liu, L. Lu, and A. Wang, Enhanced Fatigue Crack Propagation Resistance of Al-Cu-Mg Alloy by Intensifying Goss Texture and Refining Goss Grains, Mater. Sci. Eng., A, 2017, 679, p 204–214CrossRef
24.
Zurück zum Zitat G.O. Mallory and J.B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, 1991 G.O. Mallory and J.B. Hajdu, Electroless Plating: Fundamentals and Applications, AESF, Orlando, 1991
25.
Zurück zum Zitat K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, An Overall Aspect of Electroless Ni-P Depositions-A Review Article, Metall. Mater. Trans. A, 2006, 37, p 1917–1926CrossRef K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, An Overall Aspect of Electroless Ni-P Depositions-A Review Article, Metall. Mater. Trans. A, 2006, 37, p 1917–1926CrossRef
26.
Zurück zum Zitat W. Qin, Microstructure and Corrosion Behavior of Electroless Ni-P Coatings on 6061 Aluminum Alloys, J. Coat. Technol. Res., 2011, 8, p 135–139CrossRef W. Qin, Microstructure and Corrosion Behavior of Electroless Ni-P Coatings on 6061 Aluminum Alloys, J. Coat. Technol. Res., 2011, 8, p 135–139CrossRef
27.
Zurück zum Zitat N. El Mahallawy, A. Bakkar, M. Shoeib, H. Palkowski, and V. Neubert, Electroless Ni-P Coating of Different Magnesium Alloys, Surf. Coat. Tech., 2008, 202, p 5151–5157CrossRef N. El Mahallawy, A. Bakkar, M. Shoeib, H. Palkowski, and V. Neubert, Electroless Ni-P Coating of Different Magnesium Alloys, Surf. Coat. Tech., 2008, 202, p 5151–5157CrossRef
28.
Zurück zum Zitat B. Lonyuk, I. Apachitei, and J. Duszczyk, Effect of High-Phosphorus Electroless Nickel Coating on Fatigue Life of Al-Cu-Mg-Fe-Ni Alloy, Scripta Mater., 2007, 57, p 783–786CrossRef B. Lonyuk, I. Apachitei, and J. Duszczyk, Effect of High-Phosphorus Electroless Nickel Coating on Fatigue Life of Al-Cu-Mg-Fe-Ni Alloy, Scripta Mater., 2007, 57, p 783–786CrossRef
29.
Zurück zum Zitat M.A. Rahmat, R.H. Oskouei, R.N. Ibrahim, and R.K. Singh Raman, The Effect of Electroless Ni-P Coatings on the Fatigue Life of Al 7075-T6 Fastener Holes with Symmetrical Slits, Int. J. Fatigue, 2013, 52, p 30–38CrossRef M.A. Rahmat, R.H. Oskouei, R.N. Ibrahim, and R.K. Singh Raman, The Effect of Electroless Ni-P Coatings on the Fatigue Life of Al 7075-T6 Fastener Holes with Symmetrical Slits, Int. J. Fatigue, 2013, 52, p 30–38CrossRef
30.
Zurück zum Zitat R.H. Oskouei and R.N. Ibrahim, Improving Fretting Fatigue Behaviour of Al 7075-T6 Bolted Plates Using Electroless Ni-P Coatings, Int. J. Fatigue, 2012, 44, p 157–167CrossRef R.H. Oskouei and R.N. Ibrahim, Improving Fretting Fatigue Behaviour of Al 7075-T6 Bolted Plates Using Electroless Ni-P Coatings, Int. J. Fatigue, 2012, 44, p 157–167CrossRef
31.
Zurück zum Zitat Z.C. Guo and R.D. Xu, Effect of A New Brightener on the Plating Process and Properties of the Electroless Plated Nickel-Phosphorous Layer, Heat TreatHeat Treat Metals Met., 2003, 2, p 51–54 Z.C. Guo and R.D. Xu, Effect of A New Brightener on the Plating Process and Properties of the Electroless Plated Nickel-Phosphorous Layer, Heat TreatHeat Treat Metals Met., 2003, 2, p 51–54
32.
Zurück zum Zitat K. Parker and H. Shah, Plating, 1971, 58, p 230 K. Parker and H. Shah, Plating, 1971, 58, p 230
33.
Zurück zum Zitat Z.Q. Liu, R. Li, and G. Liu, Microstructural Tailoring and Improvement of Mechanical Properties in CuZr-Based Bulk Metallic Glass Composites, Acta Mater., 2012, 60, p 3128–3139CrossRef Z.Q. Liu, R. Li, and G. Liu, Microstructural Tailoring and Improvement of Mechanical Properties in CuZr-Based Bulk Metallic Glass Composites, Acta Mater., 2012, 60, p 3128–3139CrossRef
34.
Zurück zum Zitat A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems, Acta Mater., 2001, 49, p 2645–2652CrossRef A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-Strength Cu-Based Bulk Glassy Alloys Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems, Acta Mater., 2001, 49, p 2645–2652CrossRef
35.
Zurück zum Zitat T. Yamasaki, H. Izumi, and H. Sunada, The Microstructure and Fatigue Properties of Electoless Deposied Ni-P Alloys, Scripta Metal., 1981, 15, p 177CrossRef T. Yamasaki, H. Izumi, and H. Sunada, The Microstructure and Fatigue Properties of Electoless Deposied Ni-P Alloys, Scripta Metal., 1981, 15, p 177CrossRef
36.
Zurück zum Zitat H. Ashassi-Sorkhabi and S.H. Rafizadeh, Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni-P alloy Deposits, Surf. Coat. Tech., 2004, 176, p 318–326CrossRef H. Ashassi-Sorkhabi and S.H. Rafizadeh, Effect of Coating Time and Heat Treatment on Structures and Corrosion Characteristics of Electroless Ni-P alloy Deposits, Surf. Coat. Tech., 2004, 176, p 318–326CrossRef
Metadaten
Titel
Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524-T3 Alloy with Amorphous Electroless Ni-P Coating
Publikationsdatum
22.01.2018
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3169-1

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Engineering and Performance 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.