Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2020

13.02.2020 | Research Paper

Improving the off-resonance energy harvesting performance using dynamic magnetic preloading

verfasst von: Feng Qian, Shengxi Zhou, Lei Zuo

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Piezoelectric stack transducers in d33 mode have a much higher mechanical-to-electric energy conversion efficiency compared with d31 mode piezoelectric harvesters. However, multilayered piezoelectric stacks usually operate in off-resonance due to the higher stiffness and thereby have a lower power output under low-frequency excitations. This paper proposes to apply the dynamic magnetic pre-loading to a piezoelectric stack transducer to significantly increase the power output. The energy harvesting system consists of a multilayered piezoelectric stack with a compliant force amplification frame, a proof mass, and two magnets configured in attraction. The static force–displacement relationship of the magnets is identified from experiments and extended to a dynamic model capable of characterizing the dynamic magnetic interaction. An electromechanical model is developed based on the theoretical derivation and the experimentally identified parameters to predict the voltage outputs under different resistive loads. Approximate analytical solutions are derived by using the harmonic balance method and show good agreements with the numerical and experimental results. The performance of the system is examined and compared with that of the harvester without magnetic pre-loading. The influences of the distance between the two magnets and the electrical resistive loads on the power output are investigated. Results indicate the energy harvesting system with magnetic pre-loading can produce over thousand times more power than the system without magnetic pre-loading at the base excitation of 3 Hz and 0.5 m/s2, far below the resonance at 243 Hz

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, W., Cao, J., Mallick, D., et al.: Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters. Mech. Syst. Signal Process. 108, 252–261 (2018)CrossRef Wang, W., Cao, J., Mallick, D., et al.: Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters. Mech. Syst. Signal Process. 108, 252–261 (2018)CrossRef
2.
Zurück zum Zitat Fang, F., Xia, G., Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta. Mech. Sin. 34(3), 561–577 (2018)MathSciNetMATHCrossRef Fang, F., Xia, G., Wang, J.: Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta. Mech. Sin. 34(3), 561–577 (2018)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Cao, D., Gao, Y., Hu, W.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta. Mech. Sin. 35(4), 894–911 (2019)MathSciNetCrossRef Cao, D., Gao, Y., Hu, W.: Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environments. Acta. Mech. Sin. 35(4), 894–911 (2019)MathSciNetCrossRef
4.
Zurück zum Zitat Yuan, T.C., Yang, J., Chen, L.Q.: Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta. Mech. Sin. 35(4), 912–925 (2019)MathSciNetCrossRef Yuan, T.C., Yang, J., Chen, L.Q.: Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta. Mech. Sin. 35(4), 912–925 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Yang, B., Lee, C., Xiang, W., et al.: Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 19(3), 035001 (2009)CrossRef Yang, B., Lee, C., Xiang, W., et al.: Electromagnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng. 19(3), 035001 (2009)CrossRef
6.
Zurück zum Zitat Donelan, J.M., Li, Q., Naing, V., et al.: Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319, 807–810 (2008)CrossRef Donelan, J.M., Li, Q., Naing, V., et al.: Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319, 807–810 (2008)CrossRef
7.
Zurück zum Zitat Rome, L.C., Flynn, L., Goldman, E.M., et al.: Generating electricity while walking with loads. Science 309(5741), 1725–1728 (2005)CrossRef Rome, L.C., Flynn, L., Goldman, E.M., et al.: Generating electricity while walking with loads. Science 309(5741), 1725–1728 (2005)CrossRef
8.
Zurück zum Zitat Pan, Y., Lin, T., Qian, F., et al.: Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation. Appl. Energy 247, 309–321 (2019)CrossRef Pan, Y., Lin, T., Qian, F., et al.: Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation. Appl. Energy 247, 309–321 (2019)CrossRef
9.
Zurück zum Zitat Mitcheson, P., Miao, P., Start, B., et al.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A. Phys. 115(2–3), 523–529 (2004)CrossRef Mitcheson, P., Miao, P., Start, B., et al.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A. Phys. 115(2–3), 523–529 (2004)CrossRef
10.
Zurück zum Zitat Eun, Y., Kwon, D.S., Kim, M.O., et al.: A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Mater. Struct. 23(4), 045040 (2014)CrossRef Eun, Y., Kwon, D.S., Kim, M.O., et al.: A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion. Smart Mater. Struct. 23(4), 045040 (2014)CrossRef
11.
Zurück zum Zitat Luo, L., Liu, D., Zhu, M., et al.: Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion. J. Intell. Mater. Syst. Struct. 28(18), 2528–2538 (2017)CrossRef Luo, L., Liu, D., Zhu, M., et al.: Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion. J. Intell. Mater. Syst. Struct. 28(18), 2528–2538 (2017)CrossRef
12.
Zurück zum Zitat Zhu, J., Niu, X., Hou, X., et al.: Highly reliable real-time self-powered vibration Sensor based on a piezoelectric nanogenerator. Energy Technol. 6(4), 781–789 (2018)CrossRef Zhu, J., Niu, X., Hou, X., et al.: Highly reliable real-time self-powered vibration Sensor based on a piezoelectric nanogenerator. Energy Technol. 6(4), 781–789 (2018)CrossRef
13.
Zurück zum Zitat Qian, F., Zhou, W., Kaluvan, S., et al.: Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system. Smart Mater. Struct. 27(4), 045018 (2018)CrossRef Qian, F., Zhou, W., Kaluvan, S., et al.: Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system. Smart Mater. Struct. 27(4), 045018 (2018)CrossRef
14.
Zurück zum Zitat Malakooti, M.H., Sodano, H.A.: Piezoelectric energy harvesting through shear mode operation. Smart Mater. Struct. 24(5), 055005 (2015)CrossRef Malakooti, M.H., Sodano, H.A.: Piezoelectric energy harvesting through shear mode operation. Smart Mater. Struct. 24(5), 055005 (2015)CrossRef
15.
Zurück zum Zitat Wen, S., Xu, Q., Zi, B.: Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame. IEEE Sens. J. 18(10), 3989–4000 (2018)CrossRef Wen, S., Xu, Q., Zi, B.: Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame. IEEE Sens. J. 18(10), 3989–4000 (2018)CrossRef
16.
Zurück zum Zitat Xu, T.B., Siochi, E.J., Kang, J.H., et al.: Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct. 22(6), 065015 (2013)CrossRef Xu, T.B., Siochi, E.J., Kang, J.H., et al.: Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct. 22(6), 065015 (2013)CrossRef
17.
Zurück zum Zitat Li, Z., Xu, Q., Tam, L.M.: Design of a new piezoelectric energy harvesting handrail with vibration and force excitations. IEEE Access. 7, 151449–151458 (2019)CrossRef Li, Z., Xu, Q., Tam, L.M.: Design of a new piezoelectric energy harvesting handrail with vibration and force excitations. IEEE Access. 7, 151449–151458 (2019)CrossRef
18.
Zurück zum Zitat Qian, F., Xu, T.B., Zuo, L.: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Convers. Manag. 171, 1352–1364 (2018)CrossRef Qian, F., Xu, T.B., Zuo, L.: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester. Energy Convers. Manag. 171, 1352–1364 (2018)CrossRef
19.
Zurück zum Zitat Liu, X., Wang, J., Li, W.: Dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator. Appl. Sci. 8(10), 1779 (2018)CrossRef Liu, X., Wang, J., Li, W.: Dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator. Appl. Sci. 8(10), 1779 (2018)CrossRef
20.
Zurück zum Zitat Zhou, Z., Qin, W., Zhu, P.: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment. Mech. Syst. Signal Process. 110, 260–272 (2018)CrossRef Zhou, Z., Qin, W., Zhu, P.: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment. Mech. Syst. Signal Process. 110, 260–272 (2018)CrossRef
21.
Zurück zum Zitat Morris, D.J., Youngsman, J.M., Anderson, M.J., et al.: A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism. Smart Mater. Struct. 17(6), 065021 (2008)CrossRef Morris, D.J., Youngsman, J.M., Anderson, M.J., et al.: A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism. Smart Mater. Struct. 17(6), 065021 (2008)CrossRef
22.
Zurück zum Zitat Xie, Z., Xiong, J., Zhang, D., et al.: Design and experimental investigation of a piezoelectric rotation energy harvester using bistable and frequency up-conversion mechanisms. Appl. Sci. 8(9), 1418 (2018)CrossRef Xie, Z., Xiong, J., Zhang, D., et al.: Design and experimental investigation of a piezoelectric rotation energy harvester using bistable and frequency up-conversion mechanisms. Appl. Sci. 8(9), 1418 (2018)CrossRef
23.
Zurück zum Zitat Gu, L., Livermore, C.: Compact passively self-tuning energy harvesting for rotating applications. Smart Mater. Struct. 21(1), 015002 (2011)CrossRef Gu, L., Livermore, C.: Compact passively self-tuning energy harvesting for rotating applications. Smart Mater. Struct. 21(1), 015002 (2011)CrossRef
24.
Zurück zum Zitat Foisal, A.R.M., Hong, C., Chung, G.S.: Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens. Actuators, A 182, 106–113 (2012)CrossRef Foisal, A.R.M., Hong, C., Chung, G.S.: Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens. Actuators, A 182, 106–113 (2012)CrossRef
25.
Zurück zum Zitat Li, M., Zhou, J., Jing, X.: Improving low-frequency piezoelectric energy harvesting performance with novel X-structured harvesters. Nonlinear Dyn. 94(2), 1409–1428 (2018)CrossRef Li, M., Zhou, J., Jing, X.: Improving low-frequency piezoelectric energy harvesting performance with novel X-structured harvesters. Nonlinear Dyn. 94(2), 1409–1428 (2018)CrossRef
26.
Zurück zum Zitat Xue, H., Hu, Y., Wang, Q.M.: Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(9), 2104–2108 (2008)CrossRef Xue, H., Hu, Y., Wang, Q.M.: Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(9), 2104–2108 (2008)CrossRef
27.
Zurück zum Zitat Yang, Z., Zu, J.: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energy Convers. Manag. 88, 829–833 (2014)CrossRef Yang, Z., Zu, J.: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energy Convers. Manag. 88, 829–833 (2014)CrossRef
28.
Zurück zum Zitat Yang, Z., Zhu, Y., Zu, J.: Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Mater. Struct. 24(2), 025028 (2015)CrossRef Yang, Z., Zhu, Y., Zu, J.: Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Mater. Struct. 24(2), 025028 (2015)CrossRef
29.
Zurück zum Zitat Kulah, H., Najafi, K.: Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens. J. 8(3), 261–268 (2008)CrossRef Kulah, H., Najafi, K.: Energy scavenging from low-frequency vibrations by using frequency up-conversion for wireless sensor applications. IEEE Sens. J. 8(3), 261–268 (2008)CrossRef
30.
Zurück zum Zitat Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 20(4), 045004 (2011)CrossRef Gu, L., Livermore, C.: Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 20(4), 045004 (2011)CrossRef
31.
Zurück zum Zitat Challa, V.R., Prasad, M.G., Shi, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17(1), 015035 (2008)CrossRef Challa, V.R., Prasad, M.G., Shi, Y., et al.: A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17(1), 015035 (2008)CrossRef
32.
Zurück zum Zitat Challa, V.R., Prasad, M.G., Fisher, F.T.: Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater. Struct. 20(2), 025004 (2011)CrossRef Challa, V.R., Prasad, M.G., Fisher, F.T.: Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater. Struct. 20(2), 025004 (2011)CrossRef
33.
Zurück zum Zitat Qian, F., Zhou, S., Zuo, L.: Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020)MathSciNetCrossRef Qian, F., Zhou, S., Zuo, L.: Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020)MathSciNetCrossRef
34.
Zurück zum Zitat Lan, C., Qin, W.: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mech. Syst. Signal Process. 85, 71–81 (2017)CrossRef Lan, C., Qin, W.: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mech. Syst. Signal Process. 85, 71–81 (2017)CrossRef
35.
Zurück zum Zitat Wang, G., Liao, W.H., Yang, B., et al.: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 105, 427–446 (2018)CrossRef Wang, G., Liao, W.H., Yang, B., et al.: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 105, 427–446 (2018)CrossRef
36.
Zurück zum Zitat Huang, D., Zhou, S., Litak, G.: Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlinear Dyn. 97(1), 663–677 (2019)MATHCrossRef Huang, D., Zhou, S., Litak, G.: Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlinear Dyn. 97(1), 663–677 (2019)MATHCrossRef
37.
Zurück zum Zitat Li, H., Qin, W., Lan, C., et al.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2015) Li, H., Qin, W., Lan, C., et al.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2015)
38.
Zurück zum Zitat Leinonen, M., Juuti, J., Jantunen, H., et al.: Energy harvesting with a bimorph type piezoelectric diaphragm multilayer structure and mechanically induced pre-stress. Energy Technol. 4(5), 620–624 (2016)CrossRef Leinonen, M., Juuti, J., Jantunen, H., et al.: Energy harvesting with a bimorph type piezoelectric diaphragm multilayer structure and mechanically induced pre-stress. Energy Technol. 4(5), 620–624 (2016)CrossRef
39.
Zurück zum Zitat Wang, L., Chen, S., Zhou, W., et al.: Piezoelectric vibration energy harvester with two-stage force amplification. J. Intell. Mater. Syst. Struct. 28(9), 1175–1187 (2017)CrossRef Wang, L., Chen, S., Zhou, W., et al.: Piezoelectric vibration energy harvester with two-stage force amplification. J. Intell. Mater. Syst. Struct. 28(9), 1175–1187 (2017)CrossRef
Metadaten
Titel
Improving the off-resonance energy harvesting performance using dynamic magnetic preloading
verfasst von
Feng Qian
Shengxi Zhou
Lei Zuo
Publikationsdatum
13.02.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00929-4

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica Sinica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.