Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.06.2019 | Ausgabe 5/2019

Cognitive Computation 5/2019

Improving the Recall Performance of a Brain Mimetic Microcircuit Model

Zeitschrift:
Cognitive Computation > Ausgabe 5/2019
Autor:
Vassilis Cutsuridis
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s12559-019-09658-8) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The recall performance of a well-established canonical microcircuit model of the hippocampus, a region of the mammalian brain that acts as a short-term memory, was systematically evaluated. All model cells were simplified compartmental models with complex ion channel dynamics. In addition to excitatory cells (pyramidal cells), four types of inhibitory cells were present: axo-axonic (axonic inhibition), basket (somatic inhibition), bistratified cells (proximal dendritic inhibition) and oriens lacunosum-moleculare (distal dendritic inhibition) cells. All cells’ firing was timed to an external theta rhythm paced into the model by external reciprocally oscillating inhibitory inputs originating from the medial septum. Excitatory input to the model originated from the region CA3 of the hippocampus and provided context and timing information for retrieval of previously stored memory patterns. Model mean recall quality was tested as the number of stored memory patterns was increased against selectively modulated feedforward and feedback excitatory and inhibitory pathways. From all modulated pathways, simulations showed recall performance was best when feedforward inhibition from bistratified cells to pyramidal cell dendrites is dynamically increased as stored memory patterns is increased with or without increased pyramidal cell feedback excitation to bistratified cells. The study furthers our understanding of how memories are retrieved by a brain microcircuit. The findings provide fundamental insights into the inner workings of learning and memory in the brain, which may lead to potential strategies for treatments in memory-related disorders.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2019

Cognitive Computation 5/2019 Zur Ausgabe

Premium Partner

    Bildnachweise