Skip to main content

2025 | OriginalPaper | Buchkapitel

Improving the Robustness of Rumor Detection Models with Metadata-Augmented Evasive Rumor Datasets

verfasst von : Larry Huynh, Andrew Gansemer, Hyoungshick Kim, Jin B. Hong

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rumors on social media can cause serious harm. Advances in NLP enable deceptive rumors resembling real posts, necessitating more robust detection. One approach collects and augments a dataset with adversarial rumors meant to evade models. Understanding evasive rumors and adding them to a dataset improves model robustness. We demonstrate effective data augmentation that significantly improves detection models. State-of-the-art accuracy drops by up to 29.5% against evasive rumors, while our augmentation raises it by up to 14.62%. Results highlight data augmentation’s importance for robust detection models countering evasion. Our evaluation shows the value of augmentation for developing models robust against adversarial attacks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Chen, X., Zhu, D., Lin, D., Cao, D.: Rumor knowledge embedding based data augmentation for imbalanced rumor detection. Inf. Sci. 580, 352–370 (2021)MathSciNetCrossRef Chen, X., Zhu, D., Lin, D., Cao, D.: Rumor knowledge embedding based data augmentation for imbalanced rumor detection. Inf. Sci. 580, 352–370 (2021)MathSciNetCrossRef
3.
Zurück zum Zitat Choi, E.C., Ferrara, E.: Automated claim matching with large language models: empowering fact-checkers in the fight against misinformation. In: Companion Proceedings of the ACM on Web Conference 2024, pp. 1441–1449 (2024) Choi, E.C., Ferrara, E.: Automated claim matching with large language models: empowering fact-checkers in the fight against misinformation. In: Companion Proceedings of the ACM on Web Conference 2024, pp. 1441–1449 (2024)
4.
Zurück zum Zitat Guo, Z., Yu, K., Jolfaei, A., Bashir, A.K., Almagrabi, A.O., Kumar, N.: Fuzzy detection system for rumors through explainable adaptive learning. IEEE Trans. Fuzzy Syst. 29(12), 3650–3664 (2021)CrossRef Guo, Z., Yu, K., Jolfaei, A., Bashir, A.K., Almagrabi, A.O., Kumar, N.: Fuzzy detection system for rumors through explainable adaptive learning. IEEE Trans. Fuzzy Syst. 29(12), 3650–3664 (2021)CrossRef
5.
Zurück zum Zitat Huang, Q., Yu, J., Wu, J., Wang, B.: Heterogeneous graph attention networks for early detection of rumors on twitter. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020) Huang, Q., Yu, J., Wu, J., Wang, B.: Heterogeneous graph attention networks for early detection of rumors on twitter. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
7.
Zurück zum Zitat Huynh, L., Nguyen, T., Goh, J., Kim, H., Hong, J.B.: ARGH! automated rumor generation hub. In: Proceedings of the 30th ACM International Conference on Information Knowledge Management, CIKM 2021, pp. 3847–3856. Association for Computing Machinery, New York (2021) Huynh, L., Nguyen, T., Goh, J., Kim, H., Hong, J.B.: ARGH! automated rumor generation hub. In: Proceedings of the 30th ACM International Conference on Information Knowledge Management, CIKM 2021, pp. 3847–3856. Association for Computing Machinery, New York (2021)
8.
Zurück zum Zitat Jacob, P., Uitdenbogerd, A.L.: Readability of twitter tweets for second language learners. In: Proceedings of the The 17th Annual Workshop of the Australasian Language Technology Association, pp. 19–27 (2019) Jacob, P., Uitdenbogerd, A.L.: Readability of twitter tweets for second language learners. In: Proceedings of the The 17th Annual Workshop of the Australasian Language Technology Association, pp. 19–27 (2019)
9.
Zurück zum Zitat Khoo, L.M.S., Chieu, H.L., Qian, Z., Jiang, J.: Interpretable rumor detection in microblogs by attending to user interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, no. 05, pp. 8783–8790 (2020) Khoo, L.M.S., Chieu, H.L., Qian, Z., Jiang, J.: Interpretable rumor detection in microblogs by attending to user interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, no. 05, pp. 8783–8790 (2020)
10.
Zurück zum Zitat Kochkina, E., Liakata, M., Zubiaga, A.: All-in-one: multi-task learning for rumour verification. arXiv preprint arXiv:1806.03713 (2018) Kochkina, E., Liakata, M., Zubiaga, A.: All-in-one: multi-task learning for rumour verification. arXiv preprint arXiv:​1806.​03713 (2018)
11.
Zurück zum Zitat Le, T., Wang, S., Lee, D.: Malcom: generating malicious comments to attack neural fake news detection models. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 282–291. IEEE (2020) Le, T., Wang, S., Lee, D.: Malcom: generating malicious comments to attack neural fake news detection models. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 282–291. IEEE (2020)
12.
Zurück zum Zitat Lin, H., Ma, J., Chen, L., Yang, Z., Cheng, M., Chen, G.: Detect rumors in microblog posts for low-resource domains via adversarial contrastive learning. arXiv preprint arXiv:2204.08143 (2022) Lin, H., Ma, J., Chen, L., Yang, Z., Cheng, M., Chen, G.: Detect rumors in microblog posts for low-resource domains via adversarial contrastive learning. arXiv preprint arXiv:​2204.​08143 (2022)
13.
Zurück zum Zitat Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on twitter. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1867–1870 (2015) Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on twitter. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1867–1870 (2015)
14.
Zurück zum Zitat Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks (2016) Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks (2016)
15.
Zurück zum Zitat Nan, Q., Cao, J., Zhu, Y., Wang, Y., Li, J.: Mdfend: multi-domain fake news detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3343–3347 (2021) Nan, Q., Cao, J., Zhu, Y., Wang, Y., Li, J.: Mdfend: multi-domain fake news detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3343–3347 (2021)
16.
Zurück zum Zitat Pattanaik, B., Mandal, S., Tripathy, R.M.: A survey on rumor detection and prevention in social media using deep learning. Knowl. Inf. Syst. 1–42 (2023) Pattanaik, B., Mandal, S., Tripathy, R.M.: A survey on rumor detection and prevention in social media using deep learning. Knowl. Inf. Syst. 1–42 (2023)
17.
Zurück zum Zitat Qi, P., Yan, Z., Hsu, W., Lee, M.L.: Sniffer: multimodal large language model for explainable out-of-context misinformation detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13052–13062 (2024) Qi, P., Yan, Z., Hsu, W., Lee, M.L.: Sniffer: multimodal large language model for explainable out-of-context misinformation detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13052–13062 (2024)
18.
Zurück zum Zitat Shu, K., Li, Y., Ding, K., Liu, H.: Fact-enhanced synthetic news generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 13825–13833 (2021) Shu, K., Li, Y., Ding, K., Liu, H.: Fact-enhanced synthetic news generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 13825–13833 (2021)
19.
Zurück zum Zitat Singh, P., Srivastava, R., Rana, K., Kumar, V.: Semi-FND: stacked ensemble based multimodal inferencing framework for faster fake news detection. Expert Syst. Appl. 215, 119302 (2023)CrossRef Singh, P., Srivastava, R., Rana, K., Kumar, V.: Semi-FND: stacked ensemble based multimodal inferencing framework for faster fake news detection. Expert Syst. Appl. 215, 119302 (2023)CrossRef
20.
21.
Zurück zum Zitat Song, C., Shu, K., Wu, B.: Temporally evolving graph neural network for fake news detection. Inf. Process. Manag. 58(6), 102712 (2021)CrossRef Song, C., Shu, K., Wu, B.: Temporally evolving graph neural network for fake news detection. Inf. Process. Manag. 58(6), 102712 (2021)CrossRef
22.
Zurück zum Zitat Song, Y.Z., Chen, Y.S., Chang, Y.T., Weng, S.Y., Shuai, H.H.: Adversary-aware rumor detection. In: ACL-IJCNLP: Findings (2021) Song, Y.Z., Chen, Y.S., Chang, Y.T., Weng, S.Y., Shuai, H.H.: Adversary-aware rumor detection. In: ACL-IJCNLP: Findings (2021)
24.
Zurück zum Zitat Wu, L., Morstatter, F., Carley, K.M., Liu, H.: Misinformation in social media: definition, manipulation, and detection. ACM SIGKDD Explorations Newsl. 21(2), 80–90 (2019)CrossRef Wu, L., Morstatter, F., Carley, K.M., Liu, H.: Misinformation in social media: definition, manipulation, and detection. ACM SIGKDD Explorations Newsl. 21(2), 80–90 (2019)CrossRef
25.
Zurück zum Zitat Yang, F., Li, S.: Robust rumor detection based on multi-defense model ensemble. Appl. Artif. Intell. 37(1), 2151174 (2023)CrossRef Yang, F., Li, S.: Robust rumor detection based on multi-defense model ensemble. Appl. Artif. Intell. 37(1), 2151174 (2023)CrossRef
26.
Zurück zum Zitat Yang, X., Lyu, Y., Tian, T., Liu, Y., Liu, Y., Zhang, X.: Rumor detection on social media with graph structured adversarial learning. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 1417–1423 (2021) Yang, X., Lyu, Y., Tian, T., Liu, Y., Liu, Y., Zhang, X.: Rumor detection on social media with graph structured adversarial learning. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 1417–1423 (2021)
27.
Zurück zum Zitat Zhang, P., Ran, H., Jia, C., Li, X., Han, X.: A lightweight propagation path aggregating network with neural topic model for rumor detection. Neurocomputing 458, 468–477 (2021)CrossRef Zhang, P., Ran, H., Jia, C., Li, X., Han, X.: A lightweight propagation path aggregating network with neural topic model for rumor detection. Neurocomputing 458, 468–477 (2021)CrossRef
28.
Zurück zum Zitat Zhu, Y., et al.: Memory-guided multi-view multi-domain fake news detection. IEEE Trans. Knowl. Data Eng. (2022) Zhu, Y., et al.: Memory-guided multi-view multi-domain fake news detection. IEEE Trans. Knowl. Data Eng. (2022)
29.
Zurück zum Zitat Zubiaga, A., Liakata, M., Procter, R.: Learning reporting dynamics during breaking news for rumour detection in social media. arXiv preprint arXiv:1610.07363 (2016) Zubiaga, A., Liakata, M., Procter, R.: Learning reporting dynamics during breaking news for rumour detection in social media. arXiv preprint arXiv:​1610.​07363 (2016)
Metadaten
Titel
Improving the Robustness of Rumor Detection Models with Metadata-Augmented Evasive Rumor Datasets
verfasst von
Larry Huynh
Andrew Gansemer
Hyoungshick Kim
Jin B. Hong
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0576-7_25