Skip to main content

2019 | OriginalPaper | Buchkapitel

14. Impulsive Functional Dynamic Equations

verfasst von : Svetlin G. Georgiev

Erschienen in: Functional Dynamic Equations on Time Scales

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \(\mathbb {T}\) be a time scale with forward jump operator and delta differentiation operator σ and Δ, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Theorem 14.3 (Krasnosel’skii Fixed Point Theorem)
Let M be a closed convex nonempty subset of a Banach space \((\mathcal B, \Vert \cdot \Vert )\) . Suppose that
1.
\(A:M\to \mathcal {B}\) is completely continuous,
 
2.
\(B: M\to \mathcal {B}\) is a contraction,
 
3.
x, y  M implies Ax + By  M.
 
Then the map A + B has a fixed point in M.
 
Literatur
1.
Zurück zum Zitat M. Adivar and Y. Raffoul. Existence of Periodic Solutions in Totally Nonlinear Delay Dynamic Equations, Electron. J. Qual. Theory Differ. Equ., Spec. Ed. 1 (2009), 1–20. M. Adivar and Y. Raffoul. Existence of Periodic Solutions in Totally Nonlinear Delay Dynamic Equations, Electron. J. Qual. Theory Differ. Equ., Spec. Ed. 1 (2009), 1–20.
2.
Zurück zum Zitat M. Adivar and Y. Raffoul. Shift Operators and Stability in Delayed Dynamic Equations, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 68, 4,(2010), pp. 369–396. M. Adivar and Y. Raffoul. Shift Operators and Stability in Delayed Dynamic Equations, Rend. Sem. Mat. Univ. Politec. Torino, Vol. 68, 4,(2010), pp. 369–396.
3.
Zurück zum Zitat M. Adivar and Y. N. Raffoul. Existence of Periodic Solutions in Totally Nonlinear Delay Dynamic Equations, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), 1–20.MathSciNetCrossRef M. Adivar and Y. N. Raffoul. Existence of Periodic Solutions in Totally Nonlinear Delay Dynamic Equations, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), 1–20.MathSciNetCrossRef
4.
Zurück zum Zitat R. Agarwal and M. Bohner. Quadratic Functionals for Second Order Matrix Equations on Time Scales, Nonlinear Analysis, 33(1998), pp. 675–692.MathSciNetCrossRef R. Agarwal and M. Bohner. Quadratic Functionals for Second Order Matrix Equations on Time Scales, Nonlinear Analysis, 33(1998), pp. 675–692.MathSciNetCrossRef
5.
Zurück zum Zitat R. Agarwal, M. Bohner and S. Saker. Oscillation of Second Order Delay Dynamic Equations, Canadian Applied Mathematics Quarterly, Vol. 13, N. 1, 2005. R. Agarwal, M. Bohner and S. Saker. Oscillation of Second Order Delay Dynamic Equations, Canadian Applied Mathematics Quarterly, Vol. 13, N. 1, 2005.
6.
Zurück zum Zitat R. Agarwal, M. Bohner. Basic Calculus on Time Scales and Some of its Applications, Results Math. 35 (1–2) (1999) 3–22.MathSciNetCrossRef R. Agarwal, M. Bohner. Basic Calculus on Time Scales and Some of its Applications, Results Math. 35 (1–2) (1999) 3–22.MathSciNetCrossRef
7.
Zurück zum Zitat R. Agarwal, M. Bohner, T. Li and C. Zhang. Oscillation Theorems for Fourth-Order Half-Linear Delay Dynamic Equations with Damping. Mediterr. J. Math. 11, 463–475 (2014).MathSciNetCrossRef R. Agarwal, M. Bohner, T. Li and C. Zhang. Oscillation Theorems for Fourth-Order Half-Linear Delay Dynamic Equations with Damping. Mediterr. J. Math. 11, 463–475 (2014).MathSciNetCrossRef
8.
Zurück zum Zitat R. Agarwal, M. Bohner, D. O’Regan and A. Peterson. Dynamic Equations on Time Scales: A Survey, J. Comput. Appl. Math. 141 (2002) 1–26.MathSciNetCrossRef R. Agarwal, M. Bohner, D. O’Regan and A. Peterson. Dynamic Equations on Time Scales: A Survey, J. Comput. Appl. Math. 141 (2002) 1–26.MathSciNetCrossRef
9.
Zurück zum Zitat R. Agarwal, D. O’Regan, and S.H. Saker. Oscillation Criteria for Second-Order Nonlinear Neutral Delay Dynamic Equations, Journal of Mathematical Analysis and Applications 300 (2004), no. 1, 203–217.MathSciNetCrossRef R. Agarwal, D. O’Regan, and S.H. Saker. Oscillation Criteria for Second-Order Nonlinear Neutral Delay Dynamic Equations, Journal of Mathematical Analysis and Applications 300 (2004), no. 1, 203–217.MathSciNetCrossRef
10.
Zurück zum Zitat R. Agarwal, S. Grace and D. O’Regan. The Oscillation of Certain Higher-Order Functional Differential Equations. Math. Comput. Model. 37, 705–728 (2003).MathSciNetCrossRef R. Agarwal, S. Grace and D. O’Regan. The Oscillation of Certain Higher-Order Functional Differential Equations. Math. Comput. Model. 37, 705–728 (2003).MathSciNetCrossRef
11.
Zurück zum Zitat R. Agarwal, M. Bohner, S. Tang, T. Li and C. Zhang. Oscillation and Asymptotic Behavior of Third-Order Nonlinear Retarded Dynamic Equations. Appl. Math. Comput. 219, 3600–3609 (2012).MathSciNetMATH R. Agarwal, M. Bohner, S. Tang, T. Li and C. Zhang. Oscillation and Asymptotic Behavior of Third-Order Nonlinear Retarded Dynamic Equations. Appl. Math. Comput. 219, 3600–3609 (2012).MathSciNetMATH
12.
Zurück zum Zitat R. Agarwal, M. Bohner, M, T. Li and C. Zhang. A Philos-Type Theorem for Third-Order Nonlinear Retarded Dynamic equations. Appl. Math. Comput. 249, 527–531 (2014).MathSciNetCrossRef R. Agarwal, M. Bohner, M, T. Li and C. Zhang. A Philos-Type Theorem for Third-Order Nonlinear Retarded Dynamic equations. Appl. Math. Comput. 249, 527–531 (2014).MathSciNetCrossRef
13.
Zurück zum Zitat R. Agarwal, M. Bohner, T. Li and C. Zhang. Hille and Nehari Type Criteria for Third-Order Delay Dynamic Equations. J. Differ. Equ. Appl. 19, 1563–1579 (2013).MathSciNetCrossRef R. Agarwal, M. Bohner, T. Li and C. Zhang. Hille and Nehari Type Criteria for Third-Order Delay Dynamic Equations. J. Differ. Equ. Appl. 19, 1563–1579 (2013).MathSciNetCrossRef
14.
Zurück zum Zitat A. Agwo. On the Oscillation of First Order Delay Dynamic Equations with Variable Coefficients, Rocky Mountain Journal of Mathematics, Vol. 38, N. 1, 2008.MathSciNetCrossRef A. Agwo. On the Oscillation of First Order Delay Dynamic Equations with Variable Coefficients, Rocky Mountain Journal of Mathematics, Vol. 38, N. 1, 2008.MathSciNetCrossRef
15.
Zurück zum Zitat B. Ahmad and S. Sivasundaram. Dynamics and Stability of Impulsive Hybrid Setvalued Integro-Differential Equations, Nonlinear Anal. 65 (2006) 2082–2093.MathSciNetCrossRef B. Ahmad and S. Sivasundaram. Dynamics and Stability of Impulsive Hybrid Setvalued Integro-Differential Equations, Nonlinear Anal. 65 (2006) 2082–2093.MathSciNetCrossRef
16.
Zurück zum Zitat M. U. Akhmet. On the General Problem of Stability for Impulsive Differential Equations, J. Math. Anal. Appl. 288 (2003) 182–196.MathSciNetCrossRef M. U. Akhmet. On the General Problem of Stability for Impulsive Differential Equations, J. Math. Anal. Appl. 288 (2003) 182–196.MathSciNetCrossRef
17.
Zurück zum Zitat M. U. Akhmet, J. Alzabut and A. Zafer. Perron’s Theorem for Linear Impulsive Differential Equations with Distributed Delay, J. Comput. Appl. Math. 193(2006)204–218.MathSciNetCrossRef M. U. Akhmet, J. Alzabut and A. Zafer. Perron’s Theorem for Linear Impulsive Differential Equations with Distributed Delay, J. Comput. Appl. Math. 193(2006)204–218.MathSciNetCrossRef
18.
Zurück zum Zitat E. Akin-Bohner, Y. Raffoul and C. Tisdell. Exponential Stability in Functional Dynamic Equations on Time Scales, Communications in Mathematical Analysis, Vol. 9, N. 1, pp. 93–108(2010). E. Akin-Bohner, Y. Raffoul and C. Tisdell. Exponential Stability in Functional Dynamic Equations on Time Scales, Communications in Mathematical Analysis, Vol. 9, N. 1, pp. 93–108(2010).
19.
Zurück zum Zitat E. Akin-Bohner, M. Bohner and F. Akin. Pachpatte Inequalities on Time Scales, Journal of Inequalities in Pure and Applied Mathematics, vol. 6, no. 1, article 6, pp. 1–23, 2005. E. Akin-Bohner, M. Bohner and F. Akin. Pachpatte Inequalities on Time Scales, Journal of Inequalities in Pure and Applied Mathematics, vol. 6, no. 1, article 6, pp. 1–23, 2005.
20.
Zurück zum Zitat S. Althubiti, H. A. Makhzoum and Y. N. Raffoul. Periodic Solution and Stability in Nonlinear Neutral System with Infinite Delay, Appl. Math. Sci. 7(136) (2013), 6749–6764.MathSciNet S. Althubiti, H. A. Makhzoum and Y. N. Raffoul. Periodic Solution and Stability in Nonlinear Neutral System with Infinite Delay, Appl. Math. Sci. 7(136) (2013), 6749–6764.MathSciNet
21.
Zurück zum Zitat P. Amster, C. Rogers and C.C. Tisdell. Existence of Solutions to Boundary Value Problems for Dynamic Systems on Time Scales, J. Math. Anal. Appl. 308 (2005), 565–577.MathSciNetCrossRef P. Amster, C. Rogers and C.C. Tisdell. Existence of Solutions to Boundary Value Problems for Dynamic Systems on Time Scales, J. Math. Anal. Appl. 308 (2005), 565–577.MathSciNetCrossRef
22.
Zurück zum Zitat D. Anderson. Global Stability for Nonlinear Dynamic Equations with Variable Coefficients, J. Math. Anal. Appl., 345(2008), pp. 796–804.MathSciNetCrossRef D. Anderson. Global Stability for Nonlinear Dynamic Equations with Variable Coefficients, J. Math. Anal. Appl., 345(2008), pp. 796–804.MathSciNetCrossRef
23.
Zurück zum Zitat A. Anokhin, L. Berezansky and E. Braverman. Exponential Stability of Linear Delay Impulsive Differential Equations, J. Math. Anal. Appl. 193(1995) 923–991.MathSciNetCrossRef A. Anokhin, L. Berezansky and E. Braverman. Exponential Stability of Linear Delay Impulsive Differential Equations, J. Math. Anal. Appl. 193(1995) 923–991.MathSciNetCrossRef
24.
Zurück zum Zitat J. Ardabili and Z. Samian. An Asymptotic Stability Criteria of Delay Differential Equations on Time Scales, Journal of Mathematics and Computer Science, 15(2015), pp. 137–145.CrossRef J. Ardabili and Z. Samian. An Asymptotic Stability Criteria of Delay Differential Equations on Time Scales, Journal of Mathematics and Computer Science, 15(2015), pp. 137–145.CrossRef
25.
Zurück zum Zitat A. Ardjouni, I. Derrardjia and A. Djoudi. Stability in Totally Nonlinear Neutral Differential Equations with Variable Delay, Acta Math. Univ. Comenianae, 83 (2014), 119–134.MathSciNetMATH A. Ardjouni, I. Derrardjia and A. Djoudi. Stability in Totally Nonlinear Neutral Differential Equations with Variable Delay, Acta Math. Univ. Comenianae, 83 (2014), 119–134.MathSciNetMATH
26.
Zurück zum Zitat A. Ardjouni and A Djoudi. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica 52, 1 (2013) 5–19. A. Ardjouni and A Djoudi. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale, Acta Univ. Palacki. Olomnc., Fac. rer. nat., Mathematica 52, 1 (2013) 5–19.
27.
Zurück zum Zitat A. Ardjouni and A Djoudi. Stability in Neutral Nonlinear Dynamic Equations on Time Scale with Unbounded Delay, Stud. Univ. Babec-Bolyai Math. 57(2012), No. 4, 481–496. A. Ardjouni and A Djoudi. Stability in Neutral Nonlinear Dynamic Equations on Time Scale with Unbounded Delay, Stud. Univ. Babec-Bolyai Math. 57(2012), No. 4, 481–496.
28.
Zurück zum Zitat A. Ardjouni and A Djoudi. Fixed Points and Stability in Linear Neutral Differential Equations with Variable Delays, Nonlinear Analysis 74 (2011), 2062–2070.MathSciNetMATH A. Ardjouni and A Djoudi. Fixed Points and Stability in Linear Neutral Differential Equations with Variable Delays, Nonlinear Analysis 74 (2011), 2062–2070.MathSciNetMATH
29.
Zurück zum Zitat A. Ardjouni and A. Djoudi. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52(1) (2013), 5–19.MathSciNetMATH A. Ardjouni and A. Djoudi. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52(1) (2013), 5–19.MathSciNetMATH
30.
Zurück zum Zitat A. Ardjouni and A. Djoudi. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Variable Delay on a Time Scale, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3061–3069.MathSciNetMATH A. Ardjouni and A. Djoudi. Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Variable Delay on a Time Scale, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3061–3069.MathSciNetMATH
31.
Zurück zum Zitat A. Ardjouni and A. Djoudi. Periodic Solutions in Totally Nonlinear Dynamic Equations with Functional Delay on a Time Scale, Rend. Semin. Mat. Univ. Politec. Torino 68(4) (2010), 349–359.MathSciNetMATH A. Ardjouni and A. Djoudi. Periodic Solutions in Totally Nonlinear Dynamic Equations with Functional Delay on a Time Scale, Rend. Semin. Mat. Univ. Politec. Torino 68(4) (2010), 349–359.MathSciNetMATH
32.
Zurück zum Zitat A. Ardjouni and A. Djoudi. Periodic Solutions for Impulsive Neutral Dynamic Equations with Infinite Delay on Time Scales, Kragujevic Journal of Mathematics, Vol. 42(1), 2018, pp. 69–82. A. Ardjouni and A. Djoudi. Periodic Solutions for Impulsive Neutral Dynamic Equations with Infinite Delay on Time Scales, Kragujevic Journal of Mathematics, Vol. 42(1), 2018, pp. 69–82.
Metadaten
Titel
Impulsive Functional Dynamic Equations
verfasst von
Svetlin G. Georgiev
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-15420-2_14