Skip to main content
Erschienen in: Neuroinformatics 1/2020

04.05.2019 | Original Article

Imputation Strategy for Reliable Regional MRI Morphological Measurements

verfasst von: Shaina Sta. Cruz, Ivo D. Dinov, Megan M. Herting, Clio González-Zacarías, Hosung Kim, Arthur W. Toga, Farshid Sepehrband

Erschienen in: Neuroinformatics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem. Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region average values with carefully chosen imputed values, all of which are computed based on other available multivariate information. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold standard results with a significant accuracy (r = 0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a non-random fashion). The random forest technique proved to be most effective for big data studies (N > 250).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021.CrossRef Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980. https://​doi.​org/​10.​1016/​j.​neuroimage.​2006.​01.​021.CrossRef
Zurück zum Zitat Dinov, I. D. (2018). Data science and predictive analytics: Biomedical and health applications using R. Berlin: Springer.CrossRef Dinov, I. D. (2018). Data science and predictive analytics: Biomedical and health applications using R. Berlin: Springer.CrossRef
Zurück zum Zitat Dinov, I. D., Van Horn, J. D., Lozev, K. M., Magsipoc, R., Petrosyan, P., Liu, Z., MacKenzie-Graham, A., Eggert, P., Parker, D. S., & Toga, A. W. (2009). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in Neuroinformatics, 3, 22. https://doi.org/10.3389/neuro.11.022.2009. Dinov, I. D., Van Horn, J. D., Lozev, K. M., Magsipoc, R., Petrosyan, P., Liu, Z., MacKenzie-Graham, A., Eggert, P., Parker, D. S., & Toga, A. W. (2009). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in Neuroinformatics, 3, 22. https://​doi.​org/​10.​3389/​neuro.​11.​022.​2009.
Zurück zum Zitat Eskildsen, S., Coupé, P., Fonov, V., Ostergaard, L.R., Collins, L., 2011. Effect of non-local means denoising on cortical segmentation accuracy with FACE, in: Organization for Human Brain Mapping 2011 Annual Meeting. Eskildsen, S., Coupé, P., Fonov, V., Ostergaard, L.R., Collins, L., 2011. Effect of non-local means denoising on cortical segmentation accuracy with FACE, in: Organization for Human Brain Mapping 2011 Annual Meeting.
Zurück zum Zitat Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A. M. (2004b). Automatically Parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22. https://doi.org/10.1093/cercor/bhg087.CrossRefPubMed Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A. M. (2004b). Automatically Parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22. https://​doi.​org/​10.​1093/​cercor/​bhg087.CrossRefPubMed
Zurück zum Zitat Gondara, L., & Wang, K. (2017). Multiple imputation using deep denoising. arXiv preprint arXiv:1705.02737. Gondara, L., & Wang, K. (2017). Multiple imputation using deep denoising. arXiv preprint arXiv:1705.02737.
Zurück zum Zitat Hastie, T., Tibshirani, R., Balasubramanian, N., Chu, G., 2016. Impute: Imputation for microarray data. R package version 1.48. 0. Hastie, T., Tibshirani, R., Balasubramanian, N., Chu, G., 2016. Impute: Imputation for microarray data. R package version 1.48. 0.
Zurück zum Zitat Lee, M. R., Bartholow, B. D., McCarthy, D. M., Pedersen, S. L., & Sher, K. J. (2015). Two alternative approaches to conventional person-mean imputation scoring of the self-rating of the effects of alcohol scale (SRE). Psychology of Addictive Behaviors, 29, 231–236. https://doi.org/10.1037/adb0000015.CrossRefPubMed Lee, M. R., Bartholow, B. D., McCarthy, D. M., Pedersen, S. L., & Sher, K. J. (2015). Two alternative approaches to conventional person-mean imputation scoring of the self-rating of the effects of alcohol scale (SRE). Psychology of Addictive Behaviors, 29, 231–236. https://​doi.​org/​10.​1037/​adb0000015.CrossRefPubMed
Zurück zum Zitat Markovsky, I., & Usevich, K. (2012). Low Rank Approximation: Algorithms, Implementation, Applications. London: Springer.CrossRef Markovsky, I., & Usevich, K. (2012). Low Rank Approximation: Algorithms, Implementation, Applications. London: Springer.CrossRef
Zurück zum Zitat Mazumder, R., Hastie, T., & Tibshirani, R. (2010). Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11, 2287–2322.PubMed Mazumder, R., Hastie, T., & Tibshirani, R. (2010). Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11, 2287–2322.PubMed
Zurück zum Zitat Perez, D. L., Matin, N., Williams, B., Tanev, K., Makris, N., LaFrance, W. C. J., & Dickerson, B. C. (2018). Cortical thickness alterations linked to somatoform and psychological dissociation in functional neurological disorders. Human Brain Mapping, 39, 428–439. https://doi.org/10.1002/hbm.23853.CrossRefPubMed Perez, D. L., Matin, N., Williams, B., Tanev, K., Makris, N., LaFrance, W. C. J., & Dickerson, B. C. (2018). Cortical thickness alterations linked to somatoform and psychological dissociation in functional neurological disorders. Human Brain Mapping, 39, 428–439. https://​doi.​org/​10.​1002/​hbm.​23853.CrossRefPubMed
Zurück zum Zitat Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys. Hoboken: John Wiley & Sons. Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys. Hoboken: John Wiley & Sons.
Zurück zum Zitat Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins, M. E., Jackson, C., Elliott, M. A., Roalf, D. R., Hopsona, R., Prabhakaran, K., Behr, M., Qiu, H., Mentch, F. D., Chiavacci, R., Sleiman, P. M. A., Gur, R. C., Hakonarson, H., & Gur, R. E. (2016). The Philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage, 124, 1115–1119. https://doi.org/10.1016/j.neuroimage.2015.03.056.CrossRefPubMed Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins, M. E., Jackson, C., Elliott, M. A., Roalf, D. R., Hopsona, R., Prabhakaran, K., Behr, M., Qiu, H., Mentch, F. D., Chiavacci, R., Sleiman, P. M. A., Gur, R. C., Hakonarson, H., & Gur, R. E. (2016). The Philadelphia neurodevelopmental cohort: A publicly available resource for the study of normal and abnormal brain development in youth. Neuroimage, 124, 1115–1119. https://​doi.​org/​10.​1016/​j.​neuroimage.​2015.​03.​056.CrossRefPubMed
Zurück zum Zitat Toga, A. W., Foster, I., Kesselman, C., Madduri, R., Chard, K., Deutsch, E. W., Price, N. D., Glusman, G., Heavner, B. D., Dinov, I. D., Ames, J., Van Horn, J., Kramer, R., & Hood, L. (2015). Big biomedical data as the key resource for discovery science. Journal of the American Medical Informatics Association, 22, 1126–1131. https://doi.org/10.1093/jamia/ocv077.CrossRefPubMedPubMedCentral Toga, A. W., Foster, I., Kesselman, C., Madduri, R., Chard, K., Deutsch, E. W., Price, N. D., Glusman, G., Heavner, B. D., Dinov, I. D., Ames, J., Van Horn, J., Kramer, R., & Hood, L. (2015). Big biomedical data as the key resource for discovery science. Journal of the American Medical Informatics Association, 22, 1126–1131. https://​doi.​org/​10.​1093/​jamia/​ocv077.CrossRefPubMedPubMedCentral
Zurück zum Zitat Torri, F., Dinov, I. D., Zamanyan, A., Hobel, S., Genco, A., Petrosyan, P., Clark, A. P., Liu, Z., Eggert, P., Pierce, J., Knowles, J. A., Ames, J., Kesselman, C., Toga, A. W., Potkin, S. G., Vawter, M. P., & Macciardi, F. (2012). Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes (Basel), 3, 545–575. https://doi.org/10.3390/genes3030545.CrossRef Torri, F., Dinov, I. D., Zamanyan, A., Hobel, S., Genco, A., Petrosyan, P., Clark, A. P., Liu, Z., Eggert, P., Pierce, J., Knowles, J. A., Ames, J., Kesselman, C., Toga, A. W., Potkin, S. G., Vawter, M. P., & Macciardi, F. (2012). Next generation sequence analysis and computational genomics using graphical pipeline workflows. Genes (Basel), 3, 545–575. https://​doi.​org/​10.​3390/​genes3030545.CrossRef
Zurück zum Zitat van Buuren, S., & Groothuis-Oudshoorn, K. (2010). Mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 1–68. van Buuren, S., & Groothuis-Oudshoorn, K. (2010). Mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 1–68.
Zurück zum Zitat Vijayakumar, N., Allen, N. B., Youssef, G., Dennison, M., Yucel, M., Simmons, J. G., & Whittle, S. (2016). Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Human Brain Mapping, 37, 2027–2038. https://doi.org/10.1002/hbm.23154.CrossRefPubMed Vijayakumar, N., Allen, N. B., Youssef, G., Dennison, M., Yucel, M., Simmons, J. G., & Whittle, S. (2016). Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Human Brain Mapping, 37, 2027–2038. https://​doi.​org/​10.​1002/​hbm.​23154.CrossRefPubMed
Zurück zum Zitat Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.P., Barillot, C., 2008. Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: Applications to DT-MRI, in: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-540-85990-1-21. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.P., Barillot, C., 2008. Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: Applications to DT-MRI, in: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). https://​doi.​org/​10.​1007/​978-3-540-85990-1-21.
Metadaten
Titel
Imputation Strategy for Reliable Regional MRI Morphological Measurements
verfasst von
Shaina Sta. Cruz
Ivo D. Dinov
Megan M. Herting
Clio González-Zacarías
Hosung Kim
Arthur W. Toga
Farshid Sepehrband
Publikationsdatum
04.05.2019
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 1/2020
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-019-09426-x

Weitere Artikel der Ausgabe 1/2020

Neuroinformatics 1/2020 Zur Ausgabe