Skip to main content

2020 | OriginalPaper | Buchkapitel

In-Network Machine Learning Predictive Analytics: A Swarm Intelligence Approach

verfasst von : Hristo Ivanov, Christos Anagnostopoulos, Kostas Kolomvatsos

Erschienen in: Convergence of Artificial Intelligence and the Internet of Things

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses the problem of collaborative Predictive Modelling via in-network processing of contextual information captured in Internet of Things (IoT) environments. In-network predictive modelling allows the computing and sensing devices to disseminate only their local predictive Machine Learning (ML) models instead of their local contextual data. The data center, which can be an Edge Gate- way or the Cloud, aggregates these local ML predictive models to predict future outcomes. Given that communication between devices in IoT environments and a centralised data center is energy consuming and communication bandwidth demanding, the local ML predictive models in our proposed in-network processing are trained using Swarm Intelligence for disseminating only their parameters within the network. We further investigate whether dissemination overhead of local ML predictive models can be reduced by sending only relevant ML models to the data center. This is achieved since each IoT node adopts the Particle Swarm Optimisation algorithm to locally train ML models and then collaboratively with their network neighbours one representative IoT node fuses the local ML models. We provide comprehensive experiments over Random and Small World network models using linear and non-linear regression ML models to demonstrate the impact on the predictive accuracy and the benefit of communication-aware in-network predictive modelling in IoT environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Cyclic Redundancy Check.
 
2
Wireless Sensor Network.
 
Literatur
1.
Zurück zum Zitat Anagnostopoulos, C., Hadjiefthymiades, S.: Advanced principal component-based compression schemes for wireless sensor networks. ACM Trans. Sen. Netw. 11(1), 7:1–7:34 (2014). ISSN 1550-4859 Anagnostopoulos, C., Hadjiefthymiades, S.: Advanced principal component-based compression schemes for wireless sensor networks. ACM Trans. Sen. Netw. 11(1), 7:1–7:34 (2014). ISSN 1550-4859
2.
Zurück zum Zitat Candanedo, L.M., Feldheim, V., Deramaix, D.: Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 140, 81–97 (2017) Candanedo, L.M., Feldheim, V., Deramaix, D.: Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 140, 81–97 (2017)
4.
Zurück zum Zitat Barabási, A.-L.: Network science acknowledgements random networks. Creative Commons (2014) Barabási, A.-L.: Network science acknowledgements random networks. Creative Commons (2014)
5.
Zurück zum Zitat Beers, B.: What regression measures. Investopedia (2019). Cited 2 Feb 2019 Beers, B.: What regression measures. Investopedia (2019). Cited 2 Feb 2019
6.
Zurück zum Zitat Bhatia, R.: Why do data scientists prefer python over java? Analytics India Magazine (2018). Cited 27 Feb 2019 Bhatia, R.: Why do data scientists prefer python over java? Analytics India Magazine (2018). Cited 27 Feb 2019
9.
Zurück zum Zitat Engelbrecht, A.P.: Particle Swarm Optimization. Wiley (2007) Engelbrecht, A.P.: Particle Swarm Optimization. Wiley (2007)
10.
Zurück zum Zitat Harth, N., Anagnostopoulos, C.: Edge-centric efficient regression analytics. http://eprints.gla.ac.uk/160937/. April 2018 Harth, N., Anagnostopoulos, C.: Edge-centric efficient regression analytics. http://​eprints.​gla.​ac.​uk/​160937/​.​ April 2018
12.
Zurück zum Zitat Indu, S.D.: Wireless sensor networks: Issues and challenges. Int. J. Comput. Sci. Mob. Comput., 681–685 (20140 Indu, S.D.: Wireless sensor networks: Issues and challenges. Int. J. Comput. Sci. Mob. Comput., 681–685 (20140
15.
Zurück zum Zitat A. Kaveh. Particle Swarm Optimisation, chapter 2. Springer International Publishing, 2014 A. Kaveh. Particle Swarm Optimisation, chapter 2. Springer International Publishing, 2014
16.
Zurück zum Zitat Keith: The history of social media: Social networking evolution! https://historycooperative.org/the-history-of-social-media/journal=HistoryCooperative (2019). Cited 21 March 2019 Keith: The history of social media: Social networking evolution! https://​historycooperati​ve.​org/​the-history-of-social-media/​journal=​HistoryCooperati​ve (2019). Cited 21 March 2019
18.
Zurück zum Zitat Lueth, K.L.: State of the IOT 2018: Number of IOT devices now at 7b—market accelerating. IoT Analytics (2018). Cited 28 Feb 2019 Lueth, K.L.: State of the IOT 2018: Number of IOT devices now at 7b—market accelerating. IoT Analytics (2018). Cited 28 Feb 2019
19.
Zurück zum Zitat Lv, Y., Tian, Y.: Design and application of sink node for wireless sensor network. In: 2010 2nd International Conference on Industrial and Information Systems, vol. 1, pp. 487–490 (2010) Lv, Y., Tian, Y.: Design and application of sink node for wireless sensor network. In: 2010 2nd International Conference on Industrial and Information Systems, vol. 1, pp. 487–490 (2010)
22.
Zurück zum Zitat Oliphant, T.: Numpy: A guide to numpy. USA: Trelgol Publishing (2006). Cited 24 March 2019 Oliphant, T.: Numpy: A guide to numpy. USA: Trelgol Publishing (2006). Cited 24 March 2019
23.
Zurück zum Zitat Özsoy, V.S., Örkcü, H.: Estimating the parameters of nonlinear regression models through particle swarm optimization. Gazi Univ. J. Sci. 29, 187–199 (2016) Özsoy, V.S., Örkcü, H.: Estimating the parameters of nonlinear regression models through particle swarm optimization. Gazi Univ. J. Sci. 29, 187–199 (2016)
26.
Zurück zum Zitat Riordan, O., Wormald, N.: The diameter of sparse random graphs. Combinat. Prob. Comput. 19(5–6), 835–926 (2010)MathSciNetCrossRef Riordan, O., Wormald, N.: The diameter of sparse random graphs. Combinat. Prob. Comput. 19(5–6), 835–926 (2010)MathSciNetCrossRef
Metadaten
Titel
In-Network Machine Learning Predictive Analytics: A Swarm Intelligence Approach
verfasst von
Hristo Ivanov
Christos Anagnostopoulos
Kostas Kolomvatsos
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_7