Skip to main content
Erschienen in: Cellulose 10/2020

30.04.2020 | Original Research

In silico structure prediction of full-length cotton cellulose synthase protein (GhCESA1) and its hierarchical complexes

verfasst von: Abhishek Singh, Albert L. Kwansa, Ho Shin Kim, Justin T. Williams, Hui Yang, Nan K. Li, James D. Kubicki, Alison W. Roberts, Candace H. Haigler, Yaroslava G. Yingling

Erschienen in: Cellulose | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose synthase (CESA) polymerizes glucose into β-1,4-glucan chains that assemble to form cellulose microfibrils. Cellulose is the most abundant natural polymer in the world and a major structural component of the plant cell wall. An understanding of cellulose synthesis in plants is crucial for advancement in biofuels research and requires high-resolution 3D CESA structures. However, the determination of 3D structures of plant CESAs and their specific hierarchical arrangement into cellulose synthesis complexes (CSCs) has been a challenge. The prediction of CESA structures using computational methods presents a challenge due to poor sequence homology with resolved structures, long sequence, and structural complexity due to a mixture of globular, transmembrane, and intrinsically disordered regions. Herein, we present a 3D atomic-resolution model of a full-length (974-aa) cotton CESA (GhCESA1) structure using a variety of computational techniques with a reasonable ProSA-web z-score of − 8.32 (PDB available in SI). The overall fold of the CESA model indicates that there are similarities to BcsA bacterial cellulose synthase, such as the transmembrane topology and the internalization of conserved catalytic motifs. The plant-specific regions (CSR, P-CR, and N-term) fold into distinct subdomains, indicating the importance of these regions in CESA assembly into plant CSCs. We further examined possible assemblies of CESA monomers forming trimers and 18-mer CSCs, and we compared our results to those obtained by freeze fracture transmission electron microscopy. We observed that there are numerous competing ways in which CESAs may be arranged into homotrimers and CSCs. Our predicted structure can be used to probe CESA structure–activity relationships, select and subsequently test possible mutants, and investigate CESA aggregation into CSCs and microfibril formation to optimize biomass properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Case DA, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San Francisco Case DA, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San Francisco
Zurück zum Zitat Emons AMC (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98 Emons AMC (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98
Zurück zum Zitat Gurtovenko AA, Vattulainen I (2008) Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112:1953–1962. https://doi.org/10.1021/jp0750708 CrossRefPubMed Gurtovenko AA, Vattulainen I (2008) Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J Phys Chem B 112:1953–1962. https://​doi.​org/​10.​1021/​jp0750708 CrossRefPubMed
Zurück zum Zitat Hume, III EC (2001) Tcl package: La (Hume Linear Algebra) Hume, III EC (2001) Tcl package: La (Hume Linear Algebra)
Zurück zum Zitat Lee J, Freddolino PL, Zhang Y (2017) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics, 2nd edn. Springer, Dordrecht, pp 3–35CrossRef Lee J, Freddolino PL, Zhang Y (2017) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics, 2nd edn. Springer, Dordrecht, pp 3–35CrossRef
Zurück zum Zitat Li X (2017) Characterization of cellulose synthesis complexes in Physcomitrella patens. University of Rhode Island Li X (2017) Characterization of cellulose synthesis complexes in Physcomitrella patens. University of Rhode Island
Zurück zum Zitat Silvius JR (1982) Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. In: Jost PC, Griffith OH (eds) Lipid-Protein Interactions, vol 2. Wiley, New York Silvius JR (1982) Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. In: Jost PC, Griffith OH (eds) Lipid-Protein Interactions, vol 2. Wiley, New York
Zurück zum Zitat Stone JE (1998) An efficient library for parallel ray tracing and animation. University of Missouri-Rolla, Missouri-Rolla Stone JE (1998) An efficient library for parallel ray tracing and animation. University of Missouri-Rolla, Missouri-Rolla
Metadaten
Titel
In silico structure prediction of full-length cotton cellulose synthase protein (GhCESA1) and its hierarchical complexes
verfasst von
Abhishek Singh
Albert L. Kwansa
Ho Shin Kim
Justin T. Williams
Hui Yang
Nan K. Li
James D. Kubicki
Alison W. Roberts
Candace H. Haigler
Yaroslava G. Yingling
Publikationsdatum
30.04.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 10/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03194-7

Weitere Artikel der Ausgabe 10/2020

Cellulose 10/2020 Zur Ausgabe