Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

In-situ Extraction of Randomness from Computer Architecture Through Hardware Performance Counters

verfasst von : Manaar Alam, Astikey Singh, Sarani Bhattacharya, Kuheli Pratihar, Debdeep Mukhopadhyay

Erschienen in: Smart Card Research and Advanced Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

True Random Number Generators (TRNGs) are one of the most crucial components in the design and use of cryptographic protocols and communication. Predictability of such random numbers are catastrophic and can lead to the complete collapse of security, as all the mathematical proofs are based on the entropy of the source which generates these bit patterns. The randomness in the TRNGs is hugely attributed to the inherent noise of the system, which is often derived from hardware subsystems operating in an ambiguous manner. However, most of these solutions need an add-on device to provide these randomness sources, which can lead to not only latency issues but also can be a potential target of adversaries by probing such an interface. In this paper, we address to alleviate these issues by proposing an in-situ TRNG construction, which depends on the functioning of the underlying hardware architecture. These functions are observed via the Hardware Performance Counters (HPCs) and are shown to exhibit high-quality randomness in the least significant bit positions. We provide extensive experiments to research on the choice of the HPCs, and their ability to pass the standard NIST and AIS 20/31 Tests. We also analyze a possible scenario where an adversary tries to interfere with the HPC values and show its effect on the TRNG output with respect to the NIST and AIS 20/31 Tests. Additionally, to alleviate the delay caused for accessing the HPC events and increase the throughput of the random-source, we also propose a methodology to cascade the random numbers from the HPC values with a secured hash function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We selected 10 ms as it is the lowest interval of time that the perf tool supports, and thus corresponds to the highest supported frequency.
 
2
We empirically selected last 9 least significant bits for our experimental setup as for most of the events the last 9 bits provide highest entropy values.
 
Literatur
1.
Zurück zum Zitat Alam, M., Bhattacharya, S., Dutta, S., Sinha, S., Mukhopadhyay, D., Chattopadhyay, A.: RATAFIA: ransomware analysis using time and frequency informed autoencoders. In: 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 218–227 (2019) Alam, M., Bhattacharya, S., Dutta, S., Sinha, S., Mukhopadhyay, D., Chattopadhyay, A.: RATAFIA: ransomware analysis using time and frequency informed autoencoders. In: 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 218–227 (2019)
2.
Zurück zum Zitat Alam, M., Bhattacharya, S., Mukhopadhyay, D., Bhattacharya, S.: Performance counters to rescue: a machine learning based safeguard against micro-architectural side-channel-attacks. IACR Cryptology ePrint Archive 2017, 564 (2017) Alam, M., Bhattacharya, S., Mukhopadhyay, D., Bhattacharya, S.: Performance counters to rescue: a machine learning based safeguard against micro-architectural side-channel-attacks. IACR Cryptology ePrint Archive 2017, 564 (2017)
3.
Zurück zum Zitat Alam, M., Bhattacharya, S., Sinha, S., Rebeiro, C., Mukhopadhyay, D.: IPA: an instruction profiling-based micro-architectural side-channel attack on block ciphers. J. Hardw. Syst. Secur. 3(1), 26–44 (2019)CrossRef Alam, M., Bhattacharya, S., Sinha, S., Rebeiro, C., Mukhopadhyay, D.: IPA: an instruction profiling-based micro-architectural side-channel attack on block ciphers. J. Hardw. Syst. Secur. 3(1), 26–44 (2019)CrossRef
4.
Zurück zum Zitat Alam, M., Mukhopadhyay, D.: How secure are deep learning algorithms from side-channel based reverse engineering? In: Proceedings of the 56th Annual Design Automation Conference 2019, p. 226. ACM (2019) Alam, M., Mukhopadhyay, D.: How secure are deep learning algorithms from side-channel based reverse engineering? In: Proceedings of the 56th Annual Design Automation Conference 2019, p. 226. ACM (2019)
5.
Zurück zum Zitat Alam, M., Mukhopadhyay, D., Kadiyala, S.P., Lam, S.K., Srikanthan, T.: Side-channel assisted malware classifier with gradient descent correction for embedded platforms. In: PROOFS@ CHES, pp. 1–15 (2018) Alam, M., Mukhopadhyay, D., Kadiyala, S.P., Lam, S.K., Srikanthan, T.: Side-channel assisted malware classifier with gradient descent correction for embedded platforms. In: PROOFS@ CHES, pp. 1–15 (2018)
6.
Zurück zum Zitat Alameldeen, A.R., Wood, D.A.: Variability in architectural simulations of multi-threaded workloads. In: 2003 Proceedings of the Ninth International Symposium on High-Performance Computer Architecture, HPCA-9 2003, pp. 7–18. IEEE (2003) Alameldeen, A.R., Wood, D.A.: Variability in architectural simulations of multi-threaded workloads. In: 2003 Proceedings of the Ninth International Symposium on High-Performance Computer Architecture, HPCA-9 2003, pp. 7–18. IEEE (2003)
10.
Zurück zum Zitat Chen, W., et al.: A 1.04 \(\mu \)W truly random number generator for Gen2 RFID tag. In: 2009 IEEE Asian Solid-State Circuits Conference, pp. 117–120. IEEE (2009) Chen, W., et al.: A 1.04 \(\mu \)W truly random number generator for Gen2 RFID tag. In: 2009 IEEE Asian Solid-State Circuits Conference, pp. 117–120. IEEE (2009)
12.
Zurück zum Zitat Güneysu, T.: True random number generation in block memories of reconfigurable devices. In: 2010 International Conference on Field-Programmable Technology, pp. 200–207. IEEE (2010) Güneysu, T.: True random number generation in block memories of reconfigurable devices. In: 2010 International Conference on Field-Programmable Technology, pp. 200–207. IEEE (2010)
13.
Zurück zum Zitat Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux random number generator. In: 2006 IEEE Symposium on Security and Privacy (S&P 2006), pp. 15–pp. IEEE (2006) Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux random number generator. In: 2006 IEEE Symposium on Security and Privacy (S&P 2006), pp. 15–pp. IEEE (2006)
14.
Zurück zum Zitat Jun, B., Kocher, P.: The Intel random number generator. White Paper, vol. 27, pp. 1–8. Cryptography Research Inc. (1999) Jun, B., Kocher, P.: The Intel random number generator. White Paper, vol. 27, pp. 1–8. Cryptography Research Inc. (1999)
15.
Zurück zum Zitat Killmann, W., Schindler, W.: A proposal for: functionality classes for random number generators. Ser. BDI, Bonn (2011) Killmann, W., Schindler, W.: A proposal for: functionality classes for random number generators. Ser. BDI, Bonn (2011)
17.
Zurück zum Zitat Mc Guire, N., Okech, P., Schiesser, G.: Analysis of inherent randomness of the Linux kernel. In: Proceedings of the 11th Real-Time Linux Workshop. Citeseer (2009) Mc Guire, N., Okech, P., Schiesser, G.: Analysis of inherent randomness of the Linux kernel. In: Proceedings of the 11th Real-Time Linux Workshop. Citeseer (2009)
18.
Zurück zum Zitat Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data without doing anything obviously wrong!. ACM SIGARCH Comput. Archit. News 37(1), 265–276 (2009)CrossRef Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data without doing anything obviously wrong!. ACM SIGARCH Comput. Archit. News 37(1), 265–276 (2009)CrossRef
19.
Zurück zum Zitat Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(5), 615–621 (2000)CrossRef Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47(5), 615–621 (2000)CrossRef
20.
Zurück zum Zitat Robson, S., Leung, B., Gong, G.: Truly random number generator based on a ring oscillator utilizing last passage time. IEEE Trans. Circuits Syst. II Express Briefs 61(12), 937–941 (2014)CrossRef Robson, S., Leung, B., Gong, G.: Truly random number generator based on a ring oscillator utilizing last passage time. IEEE Trans. Circuits Syst. II Express Briefs 61(12), 937–941 (2014)CrossRef
21.
Zurück zum Zitat Rožić, V., Yang, B., Mentens, N., Verbauwhede, I.: Canary numbers: design for light-weight online testability of true random number generators. In: NIST RBG Workshop, Gaithersburg, MD, USA, vol. 386, p. 2016 (2016). Cryptology ePrint Archive, Technical report Rožić, V., Yang, B., Mentens, N., Verbauwhede, I.: Canary numbers: design for light-weight online testability of true random number generators. In: NIST RBG Workshop, Gaithersburg, MD, USA, vol. 386, p. 2016 (2016). Cryptology ePrint Archive, Technical report
22.
Zurück zum Zitat Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc., Mclean, VA (2001) Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc., Mclean, VA (2001)
23.
Zurück zum Zitat Weaver, V.M.: Using dynamic binary instrumentation to create faster, validated, multi-core simulations. Ph.D. thesis, Cornell University (2010) Weaver, V.M.: Using dynamic binary instrumentation to create faster, validated, multi-core simulations. Ph.D. thesis, Cornell University (2010)
24.
Zurück zum Zitat Weaver, V.M., McKee, S.A.: Can hardware performance counters be trusted? In: 2008 IEEE International Symposium on Workload Characterization, pp. 141–150. IEEE (2008) Weaver, V.M., McKee, S.A.: Can hardware performance counters be trusted? In: 2008 IEEE International Symposium on Workload Characterization, pp. 141–150. IEEE (2008)
25.
Zurück zum Zitat Weaver, V.M., Terpstra, D., Moore, S.: Non-determinism and overcount on modern hardware performance counter implementations. In: 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 215–224. IEEE (2013) Weaver, V.M., Terpstra, D., Moore, S.: Non-determinism and overcount on modern hardware performance counter implementations. In: 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 215–224. IEEE (2013)
26.
Zurück zum Zitat Yang, B., Rožic, V., Grujic, M., Mentens, N., Verbauwhede, I.: ES-TRNG: a high-throughput, low-area true random number generator based on edge sampling. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 267–292 (2018) Yang, B., Rožic, V., Grujic, M., Mentens, N., Verbauwhede, I.: ES-TRNG: a high-throughput, low-area true random number generator based on edge sampling. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 267–292 (2018)
27.
Zurück zum Zitat Yang, B., Rožić, V., Mentens, N., Dehaene, W., Verbauwhede, I.: TOTAL: TRNG on-the-fly testing for attack detection using lightweight hardware. In: Proceedings of the 2016 Conference on Design, Automation & Test in Europe, pp. 127–132. EDA Consortium (2016) Yang, B., Rožić, V., Mentens, N., Dehaene, W., Verbauwhede, I.: TOTAL: TRNG on-the-fly testing for attack detection using lightweight hardware. In: Proceedings of the 2016 Conference on Design, Automation & Test in Europe, pp. 127–132. EDA Consortium (2016)
28.
Zurück zum Zitat Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 80–91. IEEE (1982) Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 80–91. IEEE (1982)
29.
Zurück zum Zitat Zaparanuks, D., Jovic, M., Hauswirth, M.: Accuracy of performance counter measurements. In: 2009 IEEE International Symposium on Performance Analysis of Systems and Software, pp. 23–32. IEEE (2009) Zaparanuks, D., Jovic, M., Hauswirth, M.: Accuracy of performance counter measurements. In: 2009 IEEE International Symposium on Performance Analysis of Systems and Software, pp. 23–32. IEEE (2009)
Metadaten
Titel
In-situ Extraction of Randomness from Computer Architecture Through Hardware Performance Counters
verfasst von
Manaar Alam
Astikey Singh
Sarani Bhattacharya
Kuheli Pratihar
Debdeep Mukhopadhyay
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-42068-0_1